Nedeljko
- 40
- 0
Homework Statement
If f:R\longrightarrow R is a infinitely differentiable function then the function g:R\longrightarrow R defined as
<br /> g(x)=\left\{<br /> \begin{array}{ll}<br /> \frac{f(x)-\sum_{k=0}^n\frac{f^{(k)}(0)}{k!}x^k}{x^{n+1}}, & x\neq 0,<br /> \vspace{0.5em}\\<br /> \frac{f^{(n+1)}(0)}{(n+1)!}, & x=0,<br /> \end{array}<br /> \right.<br />
is also infinitely differentiable. Prove it.
Homework Equations
No.
The Attempt at a Solution
It is easy to prove that the function g is continuous. By computing derivatives I can prove that the function is three times differentiable for example, but I can not make inductive step. Is this theorem known under any name?