What is the Integral of ln(2x+1)?

  • Thread starter Thread starter Sczisnad
  • Start date Start date
  • Tags Tags
    Integral
Sczisnad
Messages
9
Reaction score
0

Homework Statement


integral ln(2x+1)dx


Homework Equations


N/A


The Attempt at a Solution


I tried integration by parts,

Let u = ln(2x+1), dv = dx, du = 2/(2x+1)dx, v = x

ln(2x+1)dx = ln(2x+1)*x-(integral)x*(2/(2x+1))dx
 
Physics news on Phys.org
Try u-substitution with u=2x+1.
 
Sczisnad said:

Homework Statement


integral ln(2x+1)dx


Homework Equations


N/A


The Attempt at a Solution


I tried integration by parts,

Let u = ln(2x+1), dv = dx, du = 2/(2x+1)dx, v = x

ln(2x+1)dx = ln(2x+1)*x-(integral)x*(2/(2x+1))dx
So far, so good. The last integral can be turned into a simpler one by dividing 2x by 2x + 1, using polynomial long division. If you don't know that technique, it works out to 1 + -1/(2x + 1) in this problem.
 
Try u subsitution (the obvious one...)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top