What is the Integral using Chain Rule for ∫√(t^4+x^3)dt from 0 to x^2?

better361
Messages
24
Reaction score
1
how do I find the integral of ∫√(t^4+x^3)dt from 0 to x^2?
 
Physics news on Phys.org
$$\int_0^{x^2} \! \sqrt{t^4+x^3} \, \mathop{dt}$$

unless x depends on t treat it as a constant inside the integral
find$$\mathop{I}(a,b,C)=\int_a^{b} \! \sqrt{t^4+C} \, \mathop{dt}$$

(note this is an eliptic integral)
then

$$\int_0^{x^2} \! \sqrt{t^4+x^3} \, \mathop{dt}=\mathop{I}(0,x^2,x^3)$$
 
Back
Top