spitz
- 57
- 0
Homework Statement
I have:
f_A=\lambda e^{-\lambda a}
f_B=\mu e^{-\mu b}
(A and B are independent)
I need to find the density of C=\min(A,B)
2. The attempt at a solution
f_C(c)=f_A(c)+f_B(c)-f_A(c)F_B(c)-F_B(c)f_A(c)
=\lambda e^{-\lambda c}+\mu e^{-\mu c}-\lambda e^{-\lambda c}(1-e^{-\mu c})-(1-e^{-\lambda c})\mu e^{-\mu c}
=\lambda e^{-\lambda c}e^{-\mu c}+\mu e^{-\lambda c}e^{-\mu c}
=2(\lambda+\mu)e^{-c(\lambda+\mu)}
Correct or utterly wrong?