What is the limit of Problem #2 using double integration?

  • Context: MHB 
  • Thread starter Thread starter sbhatnagar
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding the limit of a product expressed as a double integral, specifically focusing on the limit as \( n \) approaches infinity of a product involving squared terms. Participants explore various methods of evaluation, including logarithmic transformations and integration techniques.

Discussion Character

  • Exploratory
  • Mathematical reasoning
  • Technical explanation

Main Points Raised

  • One participant presents the limit as \( L \) and proposes that \( \log L \) can be expressed as a limit involving a Riemann sum, leading to the integral \( \int_0^1 \log (1+x^2) \;dx \).
  • Another participant agrees with the integral representation and simplifies it to \( \frac{\pi}{2} - 2 + \ln(2) \), concluding that \( L = 2 + e^{\frac{\pi}{2} - 2} \).
  • A different participant emphasizes the integration by parts method, suggesting that the key insight was recognizing the Riemann sum and expressing the limit in terms of integrals.
  • Another participant introduces a double integration approach to evaluate the same integral, providing a detailed breakdown of the steps involved in the transformation and integration process.
  • One participant notes that while integration by parts may be seen as a simpler method, the double integration approach is also valid and offers a different perspective.

Areas of Agreement / Disagreement

Participants express different methods for evaluating the limit, with some favoring integration by parts and others preferring double integration. There is no consensus on which method is superior, and the discussion remains open to various approaches.

Contextual Notes

Participants do not resolve the potential limitations of their methods, such as assumptions about convergence or the applicability of integration techniques in this context.

sbhatnagar
Messages
87
Reaction score
0
Find the limit.

$$\lim_{n \to \infty} \left\{ \left( 1+\frac{1^2}{n^2}\right)\left( 1+\frac{2^2}{n^2}\right)\left( 1+\frac{3^2}{n^2}\right) \cdots \left( 1+\frac{n^2}{n^2}\right)\right\}^{\dfrac{1}{n}}$$
 
Physics news on Phys.org
If $L$ is the limit, then $\log L=\displaystyle\lim_{n \to{+}\infty}\dfrac{1}{n}\;\displaystyle\sum_{k=1}^n \log \left(1+(k/n)^2\right)=\displaystyle\int_0^1 \log (1+x^2)\;dx$ .
 
Fernando Revilla said:
If $L$ is the limit, then $\log L=\displaystyle\lim_{n \to{+}\infty}\dfrac{1}{n}\;\displaystyle\sum_{k=1}^n \log \left(1+(k/n)^2\right)=\displaystyle\int_0^1 \log (1+x^2)\;dx$ .

Yeah that's right. The integral can be further simplified. \( \displaystyle \int_{0}^{1}\ln(1+x^2) dx= \cdots=\frac{\pi}{2}-2+\ln(2)\).

Therefore \( \displaystyle L=2+e^{\dfrac{\pi}{2}-2}\).
 
The integral is just boring old integration by parts (the real key part was realizing that it's a Riemann sum). I'm sure that's why Dr Revilla didn't bother to provide us with the calculation. But we can make it interesting in such a way that the given problem is in the end done by writing it as sum then as an integral, then as a sum, and then finally as an integral. You don't believe me? Watch this:

$$\displaystyle \begin{aligned} & \begin{aligned} \log (\ell) & = \lim_{n \to{+}\infty}\dfrac{1}{n}\;\displaystyle\sum_{k=1} ^n \log \left(1+(k/n)^2\right) \\& = \int_0^1 \log (1+x^2)\;dx \\& = \int_0^1\sum_{k \ge 0}\frac{(-1)^kx^{2k+2}}{k+1}\;{dx} \\& = \sum_{k \ge 0}\int_{0}^{1}\frac{(-1)^kx^{2k+2}}{k+1}\;{dx} \\& = \sum_{k \ge 0}\bigg[\frac{(-1)^kx^{2k+3}}{(k+1)(2k+3)}\bigg]_0^1 \\& = \sum_{k \ge 0}\frac{(-1)^k}{(k+1)(2k+3)} \\& = \sum_{k \ge 0}\frac{(-1)^k(2k+3)-2(-1)^k(k+1)}{(k+1)(2k+3)} \\& = \sum_{k\ge 0}\bigg(\frac{(-1)^k}{k+1}-\frac{2(-1)^k}{2k+3}\bigg) \\& = \sum_{k\ge 0}\int_0^1\bigg((-1)^kx^{k}-2(-1)^kx^{2k+2}\bigg)\;{dx} \\& = \int_0^1\sum_{k\ge 0}\bigg( (-1)^kx^{k}-2(-1)^kx^{2k+2}\bigg)\;{dx} \\&= \int_0^1\bigg(\frac{1}{1+x}-\frac{2x^2}{1+x^2}\bigg)\;{dx} \\& = \int_0^1\bigg(\frac{1}{1+x}-\frac{2x^2+2-2}{1+x^2}\bigg)\;{dx} \\& = \int_0^1\bigg(\frac{1}{1+x}-2+\frac{2}{1+x^2}\bigg)\;{dx} \\& = \ln|1+x|-2+2\tan^{-1}{x}\bigg|_{0}^{1} \\& = \ln(2)-2+\frac{\pi}{2} \end{aligned} \\& \therefore ~ \ell = \exp\left(\ln{2}-2+\frac{\pi}{2}\right). \end{aligned}$$
 
I like the double integration approach:

$\begin{aligned} \int_{0}^{1}{\ln (1+{{x}^{2}})\,dx}&=\int_{0}^{1}{\int_{0}^{{{x}^{2}}}{\frac{dt\,dx}{1+t}}} \\
& =\int_{0}^{1}{\int_{\sqrt{t}}^{1}{\frac{dx\,dt}{1+t}}} \\
& =\int_{0}^{1}{\frac{1-\sqrt{t}}{1+t}\,dt} \\
& =2\int_{0}^{1}{\frac{t-{{t}^{2}}}{1+{{t}^{2}}}\,dt} \\
& =-2+\frac{\pi }{2}+\ln 2.
\end{aligned}
$

Now, integration by parts it's faster than any of these methods, perhaps you may consider it a boring way, but it's still valid and saves a lot of time.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K