What is the Maximum Energy of a Photon in Positron-Electron Annihilation?

tnho
Messages
31
Reaction score
0

Homework Statement


A positron having a kinetic energy equal to its rest mass energy mec^2 collides with a stationary electron. The positron and the electron annihilate in the process and two photons are created. What is the maximum possible energy of a photon produced in the annihilation process??

Homework Equations


4-momentum vectors(??)
CM frame can help ??

The Attempt at a Solution

 
Physics news on Phys.org
4-momentum vectors, absolutely. Though it's hard to be sure until you write some down and try them out. CM may help (at least to think about) but I suggest you try first in the rest frame of the electron since it seems that is the frame in which they want an answer.
 
I'll definitely get a boost to the CM frame so that the two final photons travel at opposite direction.

then look at momentum 4 vectors of each objects, take the 4 vector dot product. and you'll get something involving the usual dot product of the two momentum vector (of the photons). simplify things (put everything in terms of energy of the two photons, E1, E2) (the dot products can be simplified since the photons travel at opposite direction). then work some inequality out (complete the squares, work out AM-GM or Cauchy if you know those).

formulas to use:
recall:
E=pc=hf for photons

and the CM frame moves at:
\vec{V}_{\text{CM}}=\frac{\sum_i{\vec{p}_ic^2}}{\sum_i E_i}
 
Last edited:
in fact, i don't know under what physical conditions, the energy of photon is at its maximum.

If the energy of photon is maximum in one frame (says CM frame), it is also maximum in another frame (says Rest frame), isn't it??

Thx
 
tnho said:
in fact, i don't know under what physical conditions, the energy of photon is at its maximum.

If the energy of photon is maximum in one frame (says CM frame), it is also maximum in another frame (says Rest frame), isn't it??

Thx

Not true at all. This why I suggested you stay in the rest frame. There is such a thing as a doppler shift.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top