mathboy20
- 27
- 0
Homework Statement
Dear Friends,
Given the differential equation
\frac{1}{1+x^2} \frac{dx}{dt} = \frac{\alpha \cdot 2 \pi}{4} \cdot cos(t)
with the condition that x(0) = 0
Then find the largest possible solution (this is how its stated) if either
\alpha_{1} = 1/2
\alpha_{2} = 1
The Attempt at a Solution
Don't I treat the above as a seperable differential equation?
Such that
{(\frac{1}{1+x^2})}^{-1})} \frac{dx}{dt} = {({\frac{\alpha \cdot 2 \pi}{4} \cdot cos(t)})}^{-1}
1+x^2 dx = \frac{2}{\alpha \cdot \pi \cdot cos(t)} dt
\int x^2 dx = \int \frac{2}{\alpha \cdot \pi \cdot cos(t)} -1 \ dt + C
\frac{x^3}{3} = \frac{2 \cdot ln(\frac{-cos(t)}{sin(t)-1}- \alpha \cdot \pi \cdot (t-C)}{\alpha \cdot \pi}
x^3 = 3 \cdot (\frac{2 \cdot ln(\frac{-cos(t)}{sin(t)-1}- \alpha \cdot \pi \cdot (t-C)}{\alpha \cdot \pi})
x(t) = (3 \cdot (\frac{2 \cdot ln(\frac{-cos(t)}{sin(t)-1}- \alpha \cdot \pi \cdot (t-C)}{\alpha \cdot \pi})^{\frac{1}{3}}
if I then insert x(0) = 0.
I get C = 0. Then this means that max solution is 0??
I just want to be sure. Can anybody please look at my result at then inform me. Have done this correctly?
Thank You in Advance
Fred