What is the meaning of N>max{A^2,7} ?

  • Thread starter Thread starter ggundamme
  • Start date Start date
ggundamme
Messages
1
Reaction score
0
What is the meaning of "N>max{A^2,7}" ?

What is the meaning of "N>max{A^2,7}"?

Thanks
 
Physics news on Phys.org
It means N > 7 \quad \text{and} \quad N > A^2

So take which ever is bigger, 7 or A2 and N is bigger than that.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top