Chuck88
- 36
- 0
The plane wave function sometimes could be represented as:
<br /> U(\mathbf{r} ,t ) = A_{0} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)}<br />
and we could separate the expression above into:
<br /> U(\mathbf{r} ,t = \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) + i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)<br />
Then what is the practical meaning of the imaginary part, ##i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)##?
<br /> U(\mathbf{r} ,t ) = A_{0} e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)}<br />
and we could separate the expression above into:
<br /> U(\mathbf{r} ,t = \cos(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi) + i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)<br />
Then what is the practical meaning of the imaginary part, ##i \sin(\mathbf{k} \cdot \mathbf{r} - \omega t + \phi)##?