What is the missing factor in equations (10.58) and (10.60)?

  • Thread starter Thread starter Jimmy Snyder
  • Start date Start date
Jimmy Snyder
Messages
1,122
Reaction score
22

Homework Statement


Equation (10.58) is:
\phi(t, \vec{x}) = \frac{1}{\sqrt{V}}\Sigma_{\vec{p}}\frac{1}{\sqrt{2E_p}}(a_{p}e^{-iE_pt + i\vec{p}\cdot\vec{x}} + a_p^{\dagger}e^{iE_pt - i\vec{p}\cdot\vec{x}})

Homework Equations


Here is equation (10.57)
\phi_{p}(t, \vec{x}) =\frac{1}{\sqrt{V}}\frac{1}{\sqrt{2E_p}}(a_{p}e^{-iE_pt + i\vec{p}\cdot\vec{x}} + a_p^{\dagger}e^{iE_pt - i\vec{p}\cdot\vec{x}})
+\frac{1}{\sqrt{V}}\frac{1}{\sqrt{2E_p}}(a_{-p}e^{-iE_pt - i\vec{p}\cdot\vec{x}} + a_{-p}^{\dagger}e^{iE_pt + i\vec{p}\cdot\vec{x}})

The Attempt at a Solution


The idea is that the second term on the r.h.s. of (10.57) is the same as the first term evaluated for \vec{p} = -\vec{p}, which does not effect E_p. Then (10.58) is supposed to be the sum of (10.57) over all values of \vec{p}. My problem is that I think there is a factor of 2 missing on the r.h.s. of (10.58) because each of the terms in (10.57) should appear twice in the sum. What am I missing? The same problem arises on page 176 for equations (10.60) and (10.61) which are sums of (10.55) and (10.56) respectively.
 
Last edited:
Physics news on Phys.org
You're argument makes sense, but I don't understand it well enough to say conclusively. 10.57 could be the equation for both p and -p, but again I am not sure.

I'll post back if this becomes clear to me.

I do think 10.63 and 10.64 are wrong if 10.60 and 10.61 are correct, however. Where does the commutator come from if both equations sum over all possible values of a their vector index?
 
Last edited:
ehrenfest said:
I do think 10.63 and 10.64 are wrong if 10.60 and 10.61 are correct, however. Where does the commutator come from if both equations sum over all possible values of a their vector index?
No, I think (10.63) and (10.64) follow from (10.60) and (10.61). The product equals the commutator in this case because the annihilator annihilates the vacuum.
 
jimmysnyder said:

Homework Statement


Equation (10.58) is:
\phi(t, \vec{x}) = \frac{1}{\sqrt{V}}\Sigma_{\vec{p}}\frac{1}{\sqrt{2E_p}}(a_{p}e^{-iE_pt + i\vec{p}\cdot\vec{x}} + a_p^{\dagger}e^{iE_pt - i\vec{p}\cdot\vec{x}})

Homework Equations


Here is equation (10.57)
\phi_{p}(t, \vec{x}) =\frac{1}{\sqrt{V}}\frac{1}{\sqrt{2E_p}}(a_{p}e^{-iE_pt + i\vec{p}\cdot\vec{x}} + a_p^{\dagger}e^{iE_pt - i\vec{p}\cdot\vec{x}})
+\frac{1}{\sqrt{V}}\frac{1}{\sqrt{2E_p}}(a_{-p}e^{-iE_pt - i\vec{p}\cdot\vec{x}} + a_{-p}^{\dagger}e^{iE_pt + i\vec{p}\cdot\vec{x}})

The Attempt at a Solution


The idea is that the second term on the r.h.s. of (10.57) is the same as the first term evaluated for \vec{p} = -\vec{p}, which does not effect E_p. Then (10.58) is supposed to be the sum of (10.57) over all values of \vec{p}. My problem is that I think there is a factor of 2 missing on the r.h.s. of (10.58) because each of the terms in (10.57) should appear twice in the sum. What am I missing? The same problem arises on page 176 for equations (10.60) and (10.61) which are sums of (10.55) and (10.56) respectively.

But in each term of equation 10.57, all the components of \vec{p} are supposed to be positive 9again, this is true for each of the two terms of 10.57). But in 10.58 the components of p are allowed to be negative. So in the sum of 10.58 here is what happens: when the p's are positive, one generates the pieces corresponding to the first term of 10.57. When the p components in 10.58 are negative, one generates the pieces coresponding to the second term of 10.57.

Does that make sense?
 
nrqed said:
But in each term of equation 10.57, all the components of \vec{p} are supposed to be positive.
Is that implied by something in the text? Just above equation (10.58) he says:
phi includes contributions from all values of \vec{p}
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top