What is the non-local interaction in HQET?

  • Thread starter Thread starter Einj
  • Start date Start date
  • Tags Tags
    Interaction
Einj
Messages
464
Reaction score
59
Hi everyone. I have been studying the Heavy Quark Effective Theory and at a certain point we have a Lagrangian like:
$$
\mathcal{L}=\bar h_v iD\cdot v h_v+\bar h_vi\gamma_\mu D^\mu_\perp\frac{1}{iD\cdot v+2m_Q}i\gamma_\nu D_\perp^\nu h_v.
$$
h_v is the field representing the heavy quark, v is the velocity of the heavy quark and D_\mu is the usual covariant derivative.

I read that this Lagrangian is non-local but I can't understand why. Do you have any idea?
 
Physics news on Phys.org
Is it because you're choosing what the momentum "v" is? Therefor things are no longer technically lorentz invariant, as the theory only holds in the limit that v is "stationary". Basically you're choosing a specific POV to choose the problem.
 
Einj said:
$$
\mathcal{L}=\bar h_v iD\cdot v h_v+\bar h_vi\gamma_\mu D^\mu_\perp\frac{1}{iD\cdot v+2m_Q}i\gamma_\nu D_\perp^\nu h_v.
$$

I read that this Lagrangian is non-local but I can't understand why. Do you have any idea?
It's because of the operator \frac{1}{iD\cdot v+2m_Q}, which implies an integration over all x. Or you can expand it in a power series and get derivatives of all orders.
 
  • Like
Likes 1 person
Great, thanks!
 
Toponium is a hadron which is the bound state of a valance top quark and a valance antitop quark. Oversimplified presentations often state that top quarks don't form hadrons, because they decay to bottom quarks extremely rapidly after they are created, leaving no time to form a hadron. And, the vast majority of the time, this is true. But, the lifetime of a top quark is only an average lifetime. Sometimes it decays faster and sometimes it decays slower. In the highly improbable case that...
I'm following this paper by Kitaev on SL(2,R) representations and I'm having a problem in the normalization of the continuous eigenfunctions (eqs. (67)-(70)), which satisfy \langle f_s | f_{s'} \rangle = \int_{0}^{1} \frac{2}{(1-u)^2} f_s(u)^* f_{s'}(u) \, du. \tag{67} The singular contribution of the integral arises at the endpoint u=1 of the integral, and in the limit u \to 1, the function f_s(u) takes on the form f_s(u) \approx a_s (1-u)^{1/2 + i s} + a_s^* (1-u)^{1/2 - i s}. \tag{70}...
Back
Top