What Is the Optimal Delivery Date d to Maximize the Expected Contract Award?

ptlnguyen
Messages
5
Reaction score
0

Homework Statement


Given:
f(x) = 1/2 - 1/4 |d-x| where x is the deliver date
If the actually delivery date from target date falls within the interval of 6 < x <8, an incentive award of C results. However if x < 6, a penalty of C1 is imposed, while if x > 8, the penalty is C2. Find the value of d that maximizes the expected contract award.


Homework Equations



Please show me how to solve this problem. Thank you much.

The Attempt at a Solution

 
Physics news on Phys.org
ptlnguyen said:

Homework Statement


Given:
f(x) = 1/2 - 1/4 |d-x| where x is the deliver date
If the actually delivery date from target date falls within the interval of 6 < x <8, an incentive award of C results. However if x < 6, a penalty of C1 is imposed, while if x > 8, the penalty is C2. Find the value of d that maximizes the expected contract award.


Homework Equations



Please show me how to solve this problem. Thank you much.

The Attempt at a Solution



What is f(x)? Is it a probability density, a cost function, a profit function or something else? If f(x) IS a probability density, it looks wrong: it must integrate to 1 when you integrate over its nonzero portions, so at the very least you need to supply bounds on x.

Anyway, the Forum rules require you to do some work on the problem yourself: we are not allowed to show you how to do it. I will say, however, that the first step---after fixing up f(x)--- must be to figure out what is the expected value of the contract award as a function of d.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top