What is the orbital period of a satellite in a low-Earth orbit?

  • Thread starter Thread starter Masschaos
  • Start date Start date
  • Tags Tags
    Orbit Period
Masschaos
Messages
30
Reaction score
0

Homework Statement


Consider a satellite in a circular, low-Earth orbit; that is, its
elevation above the Earth’s surface is h ≪ R⊕. Show that the orbital period P for such a satellite is approximately P=C(1+ 3h/[2R⊕]).


Homework Equations


P2 = (4pi2)/(GM) * a^3. (G - gravitational constant, M - mass of the Earth (in this case) and a = semi-major axis)


The Attempt at a Solution


Well, the semi-major axis will be: a = h + R⊕.
I've also picked up that a useful representation of a will be: a = R⊕(1 + h/R⊕)
This means our equation because P2 = (4pi2)/(GM) * (R⊕(1 + h/R⊕))^3.
Now we just want P, so P = (2pi/√GM) * (R⊕(1 + h/R⊕))^(3/2).

This obviously doesn't leave me with much. I've picked up from a few lectures that it may have something to do with Taylor series, but I'm severely stumped.
 
Physics news on Phys.org
Good guess. It is taylor series. (1+x)^(3/2)=1+3x/2+3x^2/8+... for x small. Truncate to the linear term. Does that help?
 
Oh yes, I do see. That is almost exactly what is required.
I don't suppose you'd know any reason for keeping it to the linear term?
Perhaps because h << R the other terms become negligible. I think that is reasonable!
Thank you very much.
That was much simpler than I thought.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top