jarvGrad
- 2
- 0
I need to find the integral as follows:
I am given a Hamiltonian of the form:
\<br /> <br /> H=\Sigma {(x_n+d y_n)^2}< 2 m E<br /> <br />
(This should be a sum over n, but its not showing in the preview)
we integrate the exponential in n-space as
\<br /> \begin{equation}<br /> \int \exp{H} d^{3n}x d^{3n}y<br /> \end{equation}<br />
so that
\<br /> \begin{equation}<br /> \int \exp{(x+dy)^2} d^{3n}x d^{3n}y<br /> \end{equation}<br />
where (x+dy)^2 < E
I found a solution that tells me
\<br /> \begin{equation}<br /> \int \exp{(ax^2+bxy+cx^2)^2} d^{3n}x d^{3n}y<br /> \end{equation}<br />
which equals
\<br /> \begin{equation}<br /> \pi^{m/2}/{det[A]} <br /> \end{equation}<br />
where A is the 2-D matrix
A=[a b
b c]
However, the determinant is zero as I am given
\<br /> <br /> x^2+2mwxy+(mwy)^2<br /> <br /> [\tex]<br /> <br /> so this doesn't work. I found this solution at <a href="http://srikant.org/thesis/node13.html" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://srikant.org/thesis/node13.html</a> .<br /> There is a bit more work shown on the website. My professor assured me that the solution is closed form.
I am given a Hamiltonian of the form:
\<br /> <br /> H=\Sigma {(x_n+d y_n)^2}< 2 m E<br /> <br />
(This should be a sum over n, but its not showing in the preview)
we integrate the exponential in n-space as
\<br /> \begin{equation}<br /> \int \exp{H} d^{3n}x d^{3n}y<br /> \end{equation}<br />
so that
\<br /> \begin{equation}<br /> \int \exp{(x+dy)^2} d^{3n}x d^{3n}y<br /> \end{equation}<br />
where (x+dy)^2 < E
I found a solution that tells me
\<br /> \begin{equation}<br /> \int \exp{(ax^2+bxy+cx^2)^2} d^{3n}x d^{3n}y<br /> \end{equation}<br />
which equals
\<br /> \begin{equation}<br /> \pi^{m/2}/{det[A]} <br /> \end{equation}<br />
where A is the 2-D matrix
A=[a b
b c]
However, the determinant is zero as I am given
\<br /> <br /> x^2+2mwxy+(mwy)^2<br /> <br /> [\tex]<br /> <br /> so this doesn't work. I found this solution at <a href="http://srikant.org/thesis/node13.html" target="_blank" class="link link--external" rel="nofollow ugc noopener">http://srikant.org/thesis/node13.html</a> .<br /> There is a bit more work shown on the website. My professor assured me that the solution is closed form.
Last edited: