What is the Probability of Drawing a Black Ball from Two Urns?

oufa
Messages
26
Reaction score
0
hi
i have an exam after 1 week and while i was studying i found this simple problem
but i couldn't answer it as the author
it is


We have two urns, I and II. Urn I contains 2 black balls and 3 white
balls. Urn II contains 1 black ball and 1 white ball. An urn is drawn at random
and a ball is chosen at random from it. We can represent the sample space of this
experiment as the paths through a tree as shown in Figure 4.1. The probabilities
assigned to the paths are also shown.
Let B be the event “a black ball is drawn,” and I the event “urn I is chosen.”
Then the branch weight 2/5, which is shown on one branch in the figure, can now
be interpreted as the conditional probability P(B|I).



any one please tell me why it is 2/5 because i think it is 1/5
figures mentioned arenot important in solving it

thnx for help
 
Physics news on Phys.org
Why do you think it should be 1/5 and why do you think the figures are not important?

The "branch weight" is 2/5 precisely because urn I contains 5 balls, 2 of which are black.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top