What is the Proof for the Trigonometric Sum Identity?

Click For Summary
SUMMARY

The trigonometric sum identity states that the sum of the cosecant squared function over a range is given by the formula \(\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }\). This identity has been proven thoroughly in the discussion, with contributions highlighting the steps involved in deriving the result. The proof utilizes properties of trigonometric functions and series summation techniques, confirming the identity's validity for integer values of \(n\).

PREREQUISITES
  • Understanding of trigonometric functions, specifically cosecant.
  • Familiarity with summation notation and series.
  • Knowledge of mathematical proof techniques.
  • Basic concepts of limits and convergence in calculus.
NEXT STEPS
  • Study the derivation of trigonometric identities in detail.
  • Explore advanced summation techniques in mathematical analysis.
  • Learn about the applications of trigonometric identities in calculus.
  • Investigate the relationship between trigonometric functions and complex numbers.
USEFUL FOR

Mathematicians, students studying trigonometry, and educators looking to deepen their understanding of trigonometric identities and their proofs.

lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the identity

\[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\]
 
Mathematics news on Phys.org
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
 
Last edited:
June29 said:
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
Thankyou, June29, for a nice and thorough solution! (Cool)
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K