MHB What is the Proof for the Trigonometric Sum Identity?

Click For Summary
The discussion focuses on proving the trigonometric sum identity \[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\] Participants express appreciation for a thorough solution provided by June29. The proof involves using properties of trigonometric functions and identities. The identity is significant in various mathematical contexts, particularly in calculus and series. The conversation highlights the importance of clear explanations in understanding complex mathematical proofs.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the identity

\[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\]
 
Mathematics news on Phys.org
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
 
Last edited:
June29 said:
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
Thankyou, June29, for a nice and thorough solution! (Cool)
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
5
Views
1K
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K