MHB What is the Proof for the Trigonometric Sum Identity?

Click For Summary
The discussion focuses on proving the trigonometric sum identity \[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\] Participants express appreciation for a thorough solution provided by June29. The proof involves using properties of trigonometric functions and identities. The identity is significant in various mathematical contexts, particularly in calculus and series. The conversation highlights the importance of clear explanations in understanding complex mathematical proofs.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the identity

\[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\]
 
Mathematics news on Phys.org
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
 
Last edited:
June29 said:
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
Thankyou, June29, for a nice and thorough solution! (Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K