MHB What is the Proof for the Trigonometric Sum Identity?

Click For Summary
The discussion focuses on proving the trigonometric sum identity \[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\] Participants express appreciation for a thorough solution provided by June29. The proof involves using properties of trigonometric functions and identities. The identity is significant in various mathematical contexts, particularly in calculus and series. The conversation highlights the importance of clear explanations in understanding complex mathematical proofs.
lfdahl
Gold Member
MHB
Messages
747
Reaction score
0
Prove the identity

\[\sum_{j=1}^{n-1}\csc^2\left ( \frac{j\pi}{n} \right ) = \frac{n^2-1}{3 }.\]
 
Mathematics news on Phys.org
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
 
Last edited:
June29 said:
By De Moivre's theorem followed by the binomial theorem:

$$ \begin{aligned} & ~~\cos(nx)+i\sin(nx) = \cos^n(x)\left(1+i\tan(x)\right)^n \\& \implies \cos(nx) = \Re(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x) \\& \implies \displaystyle \sin(nx) = \Im(\mathcal{RHS}) =\cos^n(x)\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) \\& \implies \tan(nx) = \frac{\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x)}{\sum_{k ~\text{even}}\binom{n}{k}(-1)^{k/2}\tan^{k}(x)} \end{aligned}$$The $\frac{1}{2}k(k+1)+1$ is not deep - it's just there to ensure alternating signs.

The $\mathcal{LHS}$ gives $\tan(nx) = 0 \implies x = \frac{j\pi}{n} $ for $1 \le j \le n-1$ & from $\mathcal{RHS}$

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\tan^{k}(x) =0$$

Multiplying out by $\cot^n(x)$ we get

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1}\cot^{k}(x) =0$$

So $\cot(x) = t$ where $\displaystyle x = \frac{j\pi}{n}, ~~ 1 \le j \le n-1$ satisfies

$$\sum_{k ~\text{odd}}\binom{n}{k}(-1)^{\frac{1}{2}k(k+1)+1} t^{k} =0$$

By Vieta's formulas, the sum of the squares of the roots is

$$\begin{aligned} \sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) &= \bigg(\sum_{j=1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\bigg)^2-2\bigg(\sum_{j > j' \ge 1}^{n-1}\cot\left(\frac{j\pi}{n}\right)\cot\left(\frac{j'\pi}{n}\right)\bigg) \\& = 2\binom{n}{3}\bigg/\binom{n}{1} = \frac{1}{3} (n-2) (n-1).\end{aligned}$$

Since $\cot^2{x}+1 = \csc^2{x}$ our desired conclusion is reached:

$$\begin{aligned} \sum_{j=1}^{n-1}\csc^2\left(\frac{j\pi}{n}\right) & = \sum_{j=1}^{n-1}\bigg(1+\cot^2\left(\frac{j\pi}{n}\right)\bigg) \\& = n-1+\sum_{j=1}^{n-1}\cot^2\left(\frac{j\pi}{n}\right) \\& = n-1+\frac{1}{3} (n-2) (n-1) \\& = \frac{1}{3}(n^2-1). \end{aligned} $$
Thankyou, June29, for a nice and thorough solution! (Cool)