DivGradCurl
- 364
- 0
An exact equation has the form
M(x,y) + N(x,y) \: y^{\prime} = 0
where
M(x,y) = \frac{\partial \psi}{\partial x} (x,y)
and
N(x,y) = \frac{\partial \psi}{\partial y} (x,y) \mbox{.}
If y=\phi (x) and \psi (x,y) = c, then
M(x,y) + N(x,y) \: y^{\prime} = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = \frac{d}{dx} \psi \left[ x, \phi (x) \right] = 0 \mbox{.}
I can't understand this:
\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = \frac{d}{dx} \psi \left[ x, \phi (x) \right]\mbox{.}
Any help is highly appreciated.
M(x,y) + N(x,y) \: y^{\prime} = 0
where
M(x,y) = \frac{\partial \psi}{\partial x} (x,y)
and
N(x,y) = \frac{\partial \psi}{\partial y} (x,y) \mbox{.}
If y=\phi (x) and \psi (x,y) = c, then
M(x,y) + N(x,y) \: y^{\prime} = \frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = \frac{d}{dx} \psi \left[ x, \phi (x) \right] = 0 \mbox{.}
I can't understand this:
\frac{\partial \psi}{\partial x} + \frac{\partial \psi}{\partial y} \frac{dy}{dx} = \frac{d}{dx} \psi \left[ x, \phi (x) \right]\mbox{.}
Any help is highly appreciated.