What is the relationship between the exterior and cross products?

Swapnil
Messages
459
Reaction score
6
How are the exterior products and the cross products related?

Wikipedia says: "The cross product can be interpreted as the wedge product in three dimensions after using Hodge duality to identify 2-vectors with vectors."
 
Last edited:
Physics news on Phys.org
Anyone? ......
 
The cross product can only be defined in three dimensions. It is *defined* to
be the the dual of the exterior product:
a x b := -I a^b, where I=e1e2e3 is the pseudoscalar and e1, e2, and e3 are
orthogonal unit vectors that span the space. See the following link for more:
http://www.mrao.cam.ac.uk/~clifford/publications/abstracts/imag_numbs.html
 
the cross product of 2 vectors in R^3 is another vector in R^3. The exterior product of two vectors in R^n is a bivector in a space of dimension "n choose 2".

Thus we get an object in a 3 dimensional space from the exterior product of 2 vectors in R^3, which by choosing a basis, of merely volume form, we can view as a vector.

In R^n we could similarly view a product of n-1 vectors as a vector, so we could take the cross product of more than 2 vectors in higher dimensions.

the geometry is that if we have n-1 vectors they usually span an n-1 dimensional block. so they act on vectors as follows: given another vector, all together we get an n dimensional block and we can take its volume.

thus n-1 vectors assign a number to another vector, the volume of that block.

moreover if the last vector chosen is in the spane of the first n-1, the number assigned is zero. so we could represent this action by dotting with some vector perpendicular to the span of the first n-1 vectors. this last named vector would be called the cross product of the first n-1.

i.e. the cross product of n-1 vectors is a vector perpendicualr to them, whose length equals the volume of the n-1 block they span, and whose orientation with them gives an oriented n block.

the exterior product of n-1 vectors is a gadget representing the n-1 block they span, including its span and its volume.

thus one could also form the cross product of k vectors in n space, getting an (n-k) multivector. you just need enough to fill out an n block.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top