What is the Rydberg's formula? Will it be used here?

  • Thread starter Thread starter prakhargupta3301
  • Start date Start date
  • Tags Tags
    Formula
AI Thread Summary
The discussion centers on the Rydberg formula and its various representations, leading to some confusion about their applications and correctness. The original equation, 1/λ = R(1/n1² - 1/n2²), is specifically for hydrogen atoms, while the inclusion of z² allows for its application to other similar atoms. The transition from n2 to infinity indicates ionization, and the energy needed for electron excitation can be calculated using E = hν, where ν is the frequency of the emitted photon. The negative energy in certain equations reflects the binding energy of the electron. The relationship between wavelength and frequency is clarified, emphasizing that while they are related, they are not simply inverses of each other. The discussion also touches on the concept of wavenumbers in spectroscopy, illustrating the practical use of inverse wavelength in certain contexts. Overall, the thread highlights the need for clarity in using these formulas and understanding their derivations and implications.
prakhargupta3301
Messages
58
Reaction score
1
I don't know why, but I have a slight ambiguity regrding the Rydberg formula.
In some places it is written as :
1/λ= Rh(1/n12-1/n22)
In some:
E= -Rh(1/n2)
In some:
1/λ= Rh*(z2/n2)

At some:
1/λ= Rh*(z2)(1/n12-1/n2)2

Please tell me. Where these formula are used? Are they even correct?
 
Chemistry news on Phys.org
Take a look at wiki page for the formula. It contains enough info.

The original equation is as follows:

$$\frac{1}{\lambda} = R ( \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} )$$

by taking ##n_{2} \rightarrow ##, you will get this:

$$\frac{1}{\lambda} = R ( \frac{1}{n_{1}^{2}} )$$

Note: which means, ionizing an atom by fetching an electron from ##n_{1} \rightarrow n_{2}##. Also, I replaced ##n_{1}## by ##n##.

What is the energy needed to excite an electron from ##n_{1}## to ##n_{2}##? You will need to convert the wavelength you obtained to energy. Hence, you need the equation of energy of a photon 'wiki'. Which is ##E=h \nu##, where ##\nu## is the frequency of the photon/light. Now you should work it yourself and find the second equation.

the ##z^{2}## is an extension to the original formula, so that it can be used for other atoms. The formula (the first you wrote) was originally invented for hydrogen atoms only. The one with ##z^{2}## extends the use of the formula for atoms that are similar to Hydrogen.

Please look at the wiki pages.
 
  • Like
Likes prakhargupta3301
Disclaimer: I don't know why you have a negative in your second equation. And I don't find your equations consistent with the use of the constant ##R## and ##R^{*}##
 
  • Like
Likes prakhargupta3301
The energy is negative because that is the binding energy for the electron with principal quantum number ## n ##. In a transition of energy levels from a higher state ## n_2 ## to a lower state ## n_1 ## , (## n_2>n_1 ##), a photon of energy ## \Delta E=-R(\frac{1}{n_2^2}-\frac{1}{n_1^2})=h \nu ## is emitted in order to conserve energy. There are systems of units (with ## \Delta E=\frac{hc}{\lambda} ##) that have ## h=1 ## and ## c=1 ##, but normally this is not the case. ## \\ ## The simplest derivation of this equation is the Bohr atom model. It does get the right answer for the energies of the states with principal quantum number ## n ##, but lacks some of the detail that is obtained in much more accurate quantum mechanical calculations. See https://en.wikipedia.org/wiki/Bohr_model
 
Last edited:
  • Like
Likes Phylosopher
Phylosopher said:
Take a look at wiki page for the formula. It contains enough info.

The original equation is as follows:

$$\frac{1}{\lambda} = R ( \frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} )$$

by taking ##n_{2} \rightarrow ##, you will get this:

$$\frac{1}{\lambda} = R ( \frac{1}{n_{1}^{2}} )$$

Note: which means, ionizing an atom by fetching an electron from ##n_{1} \rightarrow n_{2}##. Also, I replaced ##n_{1}## by ##n##.

What is the energy needed to excite an electron from ##n_{1}## to ##n_{2}##? You will need to convert the wavelength you obtained to energy. Hence, you need the equation of energy of a photon 'wiki'. Which is ##E=h \nu##, where ##\nu## is the frequency of the photon/light. Now you should work it yourself and find the second equation.

the ##z^{2}## is an extension to the original formula, so that it can be used for other atoms. The formula (the first you wrote) was originally invented for hydrogen atoms only. The one with ##z^{2}## extends the use of the formula for atoms that are similar to Hydrogen.

Please look at the wiki pages.
So the true formula is just where z =1 and hence it is omitted while writing?
 
prakhargupta3301 said:
So the true formula is just where z =1 and hence it is omitted while writing?
No. Read the first wiki page. Section 2.
 
Isn't the inverse of wavelength just the frequency? Why not just call it the frequency then instead of 1/wavelength? Maybe it's just the expression of the time it takes to make one wavelength? the time of a single packet of electromagnetic energy?
 
litup said:
Isn't the inverse of wavelength just the frequency?

No. They are related, but it is not just a simple inverse.
 
No, the inverse of wavelength is the number of wavelengths per unit length. Frequency is the number of cycles per second, and is related to the inverse wavelength by
frequency = speed of wave/wavelength
Because it is proportional to frequency, and hence energy, it is sometimes convenient to use inverse wavelength as an equivalent of frequency. For example, in vibrational spectroscopy, because the numbers are a convenient magnitude, we often use the number of waves per cm, which we call the "wavenumber", with units cm-1. Often we loosely call it "frequency", e.g "CO2 absorbs at a frequency of 2350 cm-1".
True frequency (Hz) = speed of light (cm/s) * wavenumber (cm-1)
 
Back
Top