What is the Second Derivative of Implicitly Differentiated Function?

Lion214
Messages
10
Reaction score
0

Homework Statement



Determine y'' when 5x^2 + 3y^2 = 4.



The Attempt at a Solution



So I found the first derivative using the power rule and chain rule,

10x + 6yy' = 0

Which I then solved for y',

y' = -10x/6y = -5x/3y

Next I found the second derivative using quotient rule,

y'' = (-15y + 15xy')/(3y)^2

This is the part where I am lost, since all the multiple choice answers involve no y' nor is there a x.
I don't know how to get rid of the x and the y' in the equation. Any help will be appreciated as to simplifying the equation even further and as to how.
 
Physics news on Phys.org
Substitute the form of y' you have into the expression for y'' and simplify.
 
Thanks statdad!

so here's what I did,

I substituted y' with -5x/3y and got

y'' = (-15y + 15x(-5x/3y))/(3y)^2 = (-15y - 25x^2/y)/(3y)^2 = (-15y^2/y - 25x^2/y)/(9y^2) = (-15y^2-25x^2)/9y^3

But I still had to get rid of the x, so I used the original equation to solve for x^2, which was;

x^2 = (4-3y^2)/5

Which I then use to simplify even further,

y'' = (-15y^2 - 25((4 - 3y^2)/5))/9y^3 = ((-75y^2 - 100 + 75y)/5)/9y^3

In which the answer is -20/9y^3.

Thanks for the insight. For some reason I didn't see that.
 
You are welcome. The little bit of ``extra'' work you've just gone through is handy to remember for these types of problems - I would state with near 100% certainty you'll see similar things in the future.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top