What is the significance of the 1D wave function Ψ(x,t) in quantum mechanics?

Cybercole
Messages
5
Reaction score
0
Ψ(x,t)=A⋅exp(A|x|)⋅exp(−iωt)


Consider the one-dimensional, time-dependent wave function for infinite motion: (x,t) = Ae–a|x| e–it where A, a, and  are positive real constants. What are: (a) normalization constant A, (b) the quantum-mechanical expectation value of coordinate x, (c) the quantum-mechanical expectation value of x2, and (d) the quantum-mechanical expectation value of the square of momentum ^p2
 
Physics news on Phys.org
They look like they are straightforward to integrate... what is your problem exactly?
Do you not understand what a normalization constant is, or how to calculate it, or did you get stuck in the integration, or ... ?
 
I know how to normalize a funtion but i am getting stuck in the middle of it... we have never normalize somthing like this before all we have ever done was matrices, i am not very strong in this type of math
 
Last edited:
Cybercole said:
I know how to normalize a funtion but i am getting stuck in the middle of it...
Please show your work, up to the part where you are stuck.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top