What is the solution for f(t,t^2)?

  • Thread starter Thread starter brendan
  • Start date Start date
brendan
Messages
64
Reaction score
0

Homework Statement



Let f(x,y) = x + (xy)^1/3

Find f(t,t^2)

Homework Equations





The Attempt at a Solution



Do I just substitute the t values into the original equation?

f(x,y) = x + (xy)^1/3

f(x,y) = t+ (tt^2)^1/3

f(x,y) = t + t

f(x,y) = 2t
 
Physics news on Phys.org
Looks good to me.
 
Thanks
Brendan
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top