SammyS said:
Let's see the details of that!
I'm intrigued .
I'll let G = ##\int_{-\infty}^{\infty} 3e^{-8x^2}dx##
and ##G^2 =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}9e^{-8(x^2+y^2)}dxdy##
Changing to polar
##\int_{0}^{2\pi} \int_{0}^{\infty}9e^{-8r^2}rdrd\theta##
the outside integral doesn't rely and is not affect by the one on the inside
##\int_{0}^{2\pi} d\theta \int_{0}^{\infty}9e^{-8r^2}rdr##
I'm going to introduce the limit now, previously left out for expedience
##2\pi\Bigg[\lim_{a \to \infty}\int_{0}^{\infty}9e^{-8r^2}rdr\Bigg]##
##9*2\pi\Bigg[\lim_{a \to \infty}\int_{0}^{\infty}e^{-8r^2}rdr\Bigg]##
##u=8r^2; du=16rdr \rightarrow \frac{du}{16r}=dr##
##9*2\pi\Bigg[\lim_{a \to \infty}\int_{0}^{\infty}e^{-u^2}r\frac{du}{16r}\Bigg]##
##9*2\pi\Bigg[\lim_{a \to \infty}\frac{1}{16}\int_{0}^{\infty}e^{-u^2}du\Bigg]##
##9*2\pi \Bigg[\lim_{a \to \infty}\frac{1}{16}(-e^{-8x^2})\Bigg|_{0}^{a}\Bigg]##
##9\Bigg[\lim_{a \to \infty}\frac{\pi}{8}(-e^{-8a^2}+e^{0})\Bigg]##
##9\cdot\frac{\pi}{8} = G^2##
##3\sqrt{\frac{\pi}{8}}=G##