ali987
- 9
- 0
Hi everyone,
consider two following partitioned matrices:
\begin{array}{l}<br /> {M_1} = \left[ {\begin{array}{*{20}{c}}<br /> { - \frac{1}{2}{X_1}} & {{X_2}} \\<br /> {{X_3}} & { - \frac{1}{2}{X_4}} \\<br /> \end{array}} \right] \\ <br /> {M_2} = \left[ {\begin{array}{*{20}{c}}<br /> {\begin{array}{*{20}{c}}<br /> {{X_1}} & { - I} \\<br /> I & 0 \\<br /> \end{array}} & {\begin{array}{*{20}{c}}<br /> 0 & 0 \\<br /> 0 & 0 \\<br /> \end{array}} \\<br /> {\begin{array}{*{20}{c}}<br /> 0 & 0 \\<br /> 0 & 0 \\<br /> \end{array}} & {\begin{array}{*{20}{c}}<br /> {{X_4}} & { - I} \\<br /> I & 0 \\<br /> \end{array}} \\<br /> \end{array}} \right] \\ <br /> \end{array}
I want to show that spectral radius (maximum absolute value of eigenvalues) of M1 and M2 are equal, but I don't know how!
this is general form of my problem the real one is somewhat easier (or maybe more complex)!
consider two following partitioned matrices:
\begin{array}{l}<br /> {M_1} = \left[ {\begin{array}{*{20}{c}}<br /> { - \frac{1}{2}{X_1}} & {{X_2}} \\<br /> {{X_3}} & { - \frac{1}{2}{X_4}} \\<br /> \end{array}} \right] \\ <br /> {M_2} = \left[ {\begin{array}{*{20}{c}}<br /> {\begin{array}{*{20}{c}}<br /> {{X_1}} & { - I} \\<br /> I & 0 \\<br /> \end{array}} & {\begin{array}{*{20}{c}}<br /> 0 & 0 \\<br /> 0 & 0 \\<br /> \end{array}} \\<br /> {\begin{array}{*{20}{c}}<br /> 0 & 0 \\<br /> 0 & 0 \\<br /> \end{array}} & {\begin{array}{*{20}{c}}<br /> {{X_4}} & { - I} \\<br /> I & 0 \\<br /> \end{array}} \\<br /> \end{array}} \right] \\ <br /> \end{array}
I want to show that spectral radius (maximum absolute value of eigenvalues) of M1 and M2 are equal, but I don't know how!
this is general form of my problem the real one is somewhat easier (or maybe more complex)!