What is the Spectral Radius of the Gauss-Seidel Method for this Matrix?

stunner5000pt
Messages
1,443
Reaction score
4
given this matrix
x_{1} + 2 x_{2} - 2x_{3} =7
x_{1} + x_{2} + x_{3} =2
2x_{1} + 2x_{2} + x_{3} =5

Show taht \rho(T_{g}) = 2 where rho represenets the spectral radius for this matrix
Tg represents the matrix formed from teh Gauss Seidel method

i found Tg to be like this
\left(\begin{array}{c|ccc}0&-2&-2&7\\-1&0&-1&2\\-2&-2&0&5\end{array}\right)

the Matrix Tg in question is
\left(\begin{array}{ccc}0&-2&-2\\-1&0&-1\\-2&-2&0\end{array}\right)


spectral radius is the maximum of the eigenvalues. But for this matrix the eigenvalues i obtained were all zero. (Am i wrong here, do you wnat me to show the working?)
So how can the spectral radius be 2??

Please help! Your help is greatly appreciated!
 
Physics news on Phys.org
Your calculation of the eigenvalues is in error (at least). For example, (1,0,-1) has eigenvalue of 2.

Carl
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top