What is the stability of a cantilevered beam subjected to damped oscillation?

  • Thread starter Thread starter iLIKEstuff
  • Start date Start date
  • Tags Tags
    Beam Oscillation
AI Thread Summary
The discussion focuses on modeling the damped oscillation of a cantilevered aluminum beam and assessing its stability under initial displacement. Key challenges include estimating damping coefficients and material properties, as well as determining whether the system is under, over, or critically damped. The beam's dimensions resemble a diving board, and the user seeks to understand the force required for small displacements to calculate the spring constant (k). Various sources of damping are identified, including hysteretic damping, aerodynamic damping, and friction at the clamping joint, with typical critical damping percentages noted. Effective stiffness and mass estimation is recommended through an undamped vibration model for accurate results.
iLIKEstuff
Messages
24
Reaction score
0
I'm trying to model the damped oscillation of a cantilevered beam for a project I'm doing. Really I want to know how "stable" this system is going to be given an initial displacement. My main problem is I'm not familiar with typical damping coefficients and material properties (or even how to estimate them). Furthermore, I don't know if my system is going to be under, over, or critically damped.

The beam is made out of aluminum that's L in length with a rectangular cross-section b and h. The relative magnitudes of L, b, and h pretty much make the system look like a diving board. Now if I displace the very end of my diving board some δy how long will it take to effectively die out.

I'm interested in displacements on the order of microns or less. So far I've modeled my system as a damped harmonic oscillator with L = 500 mm, b = 100 mm, h = 50 mm.

Y(t) = A e^{-\alpha t} cos(\omega t)
where
\omega = \sqrt{k/\omega - \alpha^2}
\alpha = \frac{C}{2I}
and C is some damping coefficient in \frac{Nm \cdot sec}{rad}, I is the moment of inertia in kgm^2, and k is the spring constant in \frac{Nm}{rad}

Any ideas on how to estimate k and C for this rectangular beam made of aluminum? There's no physical damper, and my best guesses as to how the energy is dissipated would be through friction (like bending paper clip back and forth). Am I even modeling this correctly?
 
Engineering news on Phys.org
If you were to displace the free end of the cantilever some small distance delta, how much force would be required? That would give you a handle on k.
 
There are several different sources of damping in this sort of system. The main ones will be
1. Hysteretic damping in the material.
2. Aerodynamic damping as the structure moves the surrounding air about
3. Friction at the "joint" where the structure is "rigidly" clamped.

As a rule of thumb, 1 + 2 usually give between about 2% and 5% of critical damping.
3 can be anywhere between neglible and surprisingly large (even approaching critical), but it you have a clamping system that has good geometrical tolerances (flat parallel surfaces, etc). a high clamping load, and the surfaces are completely free of oil and grease etc, it should be negligible.

The best way to estimate the effective stiffness and mass of the beam is from an undamped vibration model (this is standard theory, Google should find plenty of references). Note, the effective mass is not the same as the total mass of the beam, because different parts of the beam are moving by different amounts.
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top