What is the Tensorial Property of Symmetry for Covariant Second Rank Tensors?

greenclouds
Messages
1
Reaction score
0
How can I explain that the fact that a covariant second rank tensor is symmetric in
one coordinate system is a tensorial property. This is for my GR course, but I didn't do a Tensor Calculus before.
 
Physics news on Phys.org
You might want to start with the equation that describes how such a tensor transforms under a change of coordinates.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top