What is the the bulk modulus formula for anisotropic material?

AI Thread Summary
The discussion centers on deriving the bulk modulus (K) for anisotropic materials, contrasting it with isotropic materials. The initial query addresses whether mean stress for anisotropic materials is calculated as the average of the stresses or through a different method. It is confirmed that, under mean stress conditions, shear stresses are indeed zero, similar to isotropic cases. The user proposes a derivation using Hooke's law and compliance coefficients, ultimately concluding that their derivation aligns with the Reuss effective bulk modulus, which represents the lower bound of bulk modulus for anisotropic materials. The conversation emphasizes the complexity of applying traditional definitions to anisotropic contexts while validating the user's approach.
cylee
Messages
3
Reaction score
0
I can understand the derivation of bulk modulus (K) for isotropic material. However I have difficulty to do the same for anisotropic material.

to start with we have the definition:
mean_stress = K * (strain_xx+strain_yy+strain_zz)

My question is for anisotropic material:
Is mean_stress = (stress_xx+stress_yy+stress_zz) / 3 or something else?

when the material is subjected to mean_stress (or hydrostatic pressure if you would like), the shear stresses will be zero, the same as the isotropic case, correct?

Then how do we derive the bulk modulus formula for anisotropic material using hooke's law (compliance) coefficients?

Thanks!

By the way, here is my guess. Please feel free to correct it.

mean_stress = K * (volumetric_strain) (By definition)

mean_stress = K * (strain_xx+strain_yy+strain_zz)

mean_stress = K * [(S11+S21+S31)*stress_xx + (S12+S22+S32)*stress_yy + (S13+S23+S33)*stress_zz + (S14+S24+S34)*stress_xy + (S15+S25+S35)*stress_xz + (S16+S26+S36)*stress_yz] (From hooke's law)

mean_stress = K * (S11+S21+S31+S12+S22+S32+S13+S23+S33) * mean_stress (subjected to mean_stress)

K = 1/sum(Sij) for i,j=1:3
 
Engineering news on Phys.org
See section 2.8 of http://www.colorado.edu/engineering/CAS/Felippa.d/FelippaHome.d/Publications.d/Report.CU-CAS-02-09.pdf
 
The pdf suggests the use of effective bulk modulus. But as far as bulk modulus is concerned, it is the ratio between mean normal stress and volumetric strain, subjected to hydrostatic stress (which is the mean normal stress). This statement is the same as writing w=[1 1 1 0 0 0] for the effective bulk modulus for anisotropic material, which again degenerates to the conventional bulk modulus definition.
Sorry, I can't see the point of your attached pdf. In specific, I am still wondering whether my derivation of bulk modulus for anisotropic material is correct or not.
 
CONFIRMED FOUNDING HERE

Long story short: My derivation represents the lower bound of the bulk modulus called Reuss effective bulk modulus. My assumption and derivation are correct. Thank you for all your input I very much appreciate it.
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...

Similar threads

Back
Top