What is the total energy and velocity of a ball in a vertical circular path?

AI Thread Summary
The discussion focuses on calculating the total energy and velocity of a ball in a vertical circular path. The total energy is determined to be 13.6 J, combining kinetic energy (3.6 J) and potential energy (10 J) at the top of the circle. There is clarification on calculating potential energy, emphasizing that it should account for the height from the ground. The velocity at the bottom of the circle is calculated to be 5 m/s, which is higher than the 3 m/s at the top due to the influence of gravity. The calculations and concepts regarding energy conservation in the system are confirmed to be correct.
HumorMe81
Messages
17
Reaction score
0
A 0.8 kg ball is whirled on a string r = 0.4 meters long in a vertical circular path. At the bottom of the circle, the ball is h = 0.45 meters from the ground. At the top of the circle, the ball has a speed of 3 m/s. Assume that the total energy of the ball is kept constant.

a. Calculate total energy of the ball (ground is zero potential energy)
I chose the top most point of the circle to do ths since PE is maximum there.
ME = KE + PE
Ke = mv^2/2 = (.8kg)*(3m/s)^2/2 = 3.6 J
PE = mgh = (.8kg)*(10m/s^2)*(1.25m) =10 J
Total energy = 13.6 J

Im not sure if i calculated the PE correctly. I know that PE at the top of the circle is mg2r but then i have to consider the height from the ground to the top of the circle. So i figured i should add the distance from the ground up and multiply by mg. is that right?

Next part of the question asks me to calculate velocity at the bottom of the circle. Here KE is larger than PE.
ME = KE + PE
13.6 J = mv^2/2 + mgh
13.6 J = (.8kg * v^2)/2 + (.8kg)*(10m/s^2)*(.45m)
When i solve for velocity i get 5m/s. how can this be? Shouldn't it be 3m/s as it is on the top? What am i doing wrong?
 
Physics news on Phys.org
Everything is correct. Gravity pulls down on the ball, so it speeds up going down, and slows down going up. That's why it's going 3m/s at the top and 5m/s at the bottom.

And yes, you compute potential energy correctly for both cases, because problem explicitly states that 0 is to be taken at ground level. So the height of the ball is h at the bottom and h+2r at the top. That gives you mgh and mg(h+2r) respectively for potential energy.
 
Ok, thanks a lot for your help!
 
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top