What Is the Use of Families of Straight Lines in Geometry?

theow
Messages
8
Reaction score
0
This is my second post on PF =)
I want to ask what is the use of Families of straight lines?
I am thinking of A Family of Straight Lines Passing Through the Intersection of Two Lines.
We have the equation: L1+kL2=0 where L1=L2=0 and k is a variable, right?
But is it said that L2 is not included in this family?
So why are we using this equation, when it cannot fully represent all the lines with this common properties, so as to classify them into a family?
Please, may you help. Thanks
 
Mathematics news on Phys.org
"We have the equation: L1+kL2=0 where L1=L2=0 and k is a variable, right?"

I cannot make sense out of that sentence. If "L1= L2= 0 and k is a variable" then the equation L1+ kL2= 0 just says "0= 0". It says nothing about any "family of straight lines".
 
HallsofIvy said:
"We have the equation: L1+kL2=0 where L1=L2=0 and k is a variable, right?"

I cannot make sense out of that sentence. If "L1= L2= 0 and k is a variable" then the equation L1+ kL2= 0 just says "0= 0". It says nothing about any "family of straight lines".

Maybe I wasn't making the question clear enough...

Here's what I find in my textbook:

Given two straight lines
L1: A1x+B1y+C1=0
and L2: A2x+B2y+C2=0
which intersects at the point P(x1,y1)
Substitute P(x1,y1) into L1 and L2 respectively, we have
A1x1+B1y1+C1=0...(1)
A2x1+B2y1+C2=0...(2)
Consider
L: (A1x1+B1y1+C1)+k(A2x1+B2y1+C2)=0, where k is real.
For each value of k, together with (1) and (2), we have
(A1x1+B1y1+C1)+k(A2x1+B2y1+C2)=0+k(0)=0
which shows that L passes through P.
L can also be arranged as
(A1+kA2)x+(B1+kB2)y+(C1+kC2)=0
which shows that L is a straight line.
In conclusion, as k varies,
(A1x1+B1y1+C1)+k(A2x1+B2y1+C2)=0, where k is real,
represent a family of straight lines passing through the point of intersection of L1 and L2.
It should be emphasized that the line L2 is not included in this family. In order to represent all the lines passing through the point of intersection of L1 and L2, th efolloewing form would be used:
l(A1x1+B1y1+C1)+m(A2x1+B2y1+C2)=0, where l and m are real.

So why don't we use the last equation instead?
Thanks.
 
Welcome to PF!

Hi theow ! Welcome to PF! :smile:
theow said:
L1 + kL2

But is it said that L2 is not included in this family?

Yes … L1 is included, because L1 = L1 + kL2 with k= 0.

But there is no k (unless you include infinity, which is not allowed) for which L2 = L1 + kL2, is there? :smile:
theow said:
So why don't we use the last equation instead?

We do … your textbook says:
In order to represent all the lines passing through the point of intersection of L1 and L2, the following form would be used:
l(A1x1+B1y1+C1)+m(A2x1+B2y1+C2)=0, where l and m are real.

We use lL1 + mL2. :smile:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top