What Is the Value of f(12) Given These Function Conditions?

  • Thread starter Thread starter e^(i Pi)+1=0
  • Start date Start date
  • Tags Tags
    Analysis
e^(i Pi)+1=0
Messages
246
Reaction score
1

Homework Statement



f is a function defined on natural numbers such that

2f(n) * f(2n+1) = f(2n) *[2f(n) + 1] and

8f(n) > f(2n) > 4f(n)

Find value of f(12)

The Attempt at a Solution



f(n)=\frac{f(2n)}{2f(2n+1)-2f(2n)}

f(12)=\frac{f(24)}{2f(25)-2f(24)}\frac{}{}

2f(n) > f(n) so f(n) > 0 and f(2n) > 0

Because \frac{f(2n)}{2f(2n+1)-2f(2n)} > 0 and f(2n) > 0 we know that

f(2n+1) > f(2n) so f'(n) > 0

Other than that, I have no idea. Math level: ODEs
 
Physics news on Phys.org
e^(i Pi)+1=0 said:

Homework Statement



f is a function defined on natural numbers such that

2f(n) * f(2n+1) = f(2n) *[2f(n) + 1] and

8f(n) > f(2n) > 4f(n)

Find value of f(12)

The Attempt at a Solution



f(n)=\frac{f(2n)}{2f(2n+1)-2f(2n)}

f(12)=\frac{f(24)}{2f(25)-2f(24)}\frac{}{}

2f(n) > f(n) so f(n) > 0 and f(2n) > 0

Because \frac{f(2n)}{2f(2n+1)-2f(2n)} > 0 and f(2n) > 0 we know that

f(2n+1) > f(2n) so f'(n) > 0

Other than that, I have no idea. Math level: ODEs
Do you mean that the function f is given by ##f:\mathbb{N}\rightarrow\mathbb{R}##? If so, why are we using derivatives?
 
The problem is underspecified. I have a family of solutions with two partly arbitrary constants. Requiring f:N→N fixes one of them; knowing f(1) fixes the other. Whether there are other solutions, I don't know.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top