What is the value of f'(2) when f(x) and x are given in a polynomial equation?

  • Thread starter Thread starter Macroer
  • Start date Start date
  • Tags Tags
    Value
Macroer
Messages
27
Reaction score
0

Homework Statement


[f(x)]^5 + f(x)/(7x^2)=4
when f(2)=3, calculate f'(2)


Homework Equations





The Attempt at a Solution


Attachment has solution

I am stuck. I don't know if I am right upto there.
 

Attachments

  • latex.png
    latex.png
    4 KB · Views: 435
Physics news on Phys.org
I can't see your attachment. But just take the derivative of both sides of the equation and solve for f'(x).
 
Here is what is in the attachment:
\left[f(x)\right]^5+ f(x)/7x^2= 4
7x^2\left[f(x)\right]^5+ f(x)= 28x^2
f(x)= 28x^2- 7x^2\left[f(x)\right]^5
f'(x)= 56x- (14x\left[f(x)\right]^5- 35x^2\left[f(x)\right]^4 f'(x))

That has a sign wrong- either drop the parentheses or write
f'(x)= 56x- (14x\left[f(x)\right]^5+ 35x^2\left[f(x)\right]^4 f'(x))

when x= 2,
f'(2)= 56(2)- (14(2)3^6+ 35(4)(3)^4f'(x))
f'(2)= -6692- 11340f'(2)
and you now have the sign right!

Now, just solve for f'(2): add 11340f'(2) to both sides and divide by 11341.
(I didn't check your arithmetic!)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top