What is the Wavelength of Emitted Photon in a Cosmological Redshift Scenario?

Joella Kait
Messages
5
Reaction score
0

Homework Statement



Consider a point in the intergalactic medium at some cosmic time ## t_{obs}##, the time of arrival of a photon of wavelength ##λ_{obs}## as seen by a hydrogen atom at that location. The source of this photon a comoving distance ##r## away emitted it at wavelength ##λ_{em}## at time ##t_{em}##. Assume the scale factor at present ##a_0= 1##.

(a) Express ##r## as a function of ##t_{obs}##, ##t_{em}## and the scale factor ##a(t)##.

(b) Solve for the dependence of ##a(t)## on ##t## for a universe in which the Hubble constant varies with time according to
\ H(t)=\frac{2}{3t}.

(c) What is the ratio of ##λ_{em}## to ##λ_{obs}## in terms of ##t_{em}## and ##t_{obs}##, in a universe described in (b)?

(d) The same photon will later reach a telescope on Earth today at ##λ_0=3645 Angstroms##. Suppose ##λ_{obs}=1215 Angstroms##, the H atom Lyman-alpha line transition. What is ##λ_{em}## if the source is located a comoving distance ##r=500 Mpc## (in present-day units) away from the H atom? Assume ##H_0=70 km s^{-1} Mpc^{-1}##.

I mainly just want help with part (d).

Homework Equations


[/B]
## ds^2=-c^2dt^2+a(t)^2[dr^2+s_k(r)^2d\Omega^2## but ##ds=0## and ##d\Omega=0##
##H(t)=\frac{1}{a}*\frac{da}{dt}##
##\frac{\lambda_{em}}{a(t_{em})}=\frac{\lambda_{obs}}{a(t_{obs})}##

The Attempt at a Solution


[/B]
For part (a) I intergrated and got ## r=c\int\limits_{t_{em}}^{t_{obs}} \frac{1}{a(t)} \ dt ##.
For part (b) I used the second equation to get ##a(t)=t^{2/3}##
For part (c) I used the third equation to get ##\frac{\lambda_{em}}{\lambda_{obs}}=\frac{t_{em}^{2/3}}{t_{obs}^{2/3}}##
I'm really lost on part (d) though. I was told that I'm supposed to integrate my answer from (a), but I am not quite sure how to go about that.
##r=c\int\limits_{t_{em}}^{t_{obs}} \frac{1}{t^{2/3}} \ dt = 3c(t_{obs}^{1/3}-t_{em}^{1/3})##
I'm not sure how to get ##\lambda's## from this, and I'm also not sure how to include ##t_0/\lambda_0##
 
Last edited:
Physics news on Phys.org
##\lambda_{obs}## is not the wavelength observed on Earth at the present time. It is the wavelength observed by a comoving hydrogen atom at some intermediate time ##t_{obs}##.
 
  • Like
Likes Joella Kait
Orodruin said:
##\lambda_{obs}## is not the wavelength observed on Earth at the present time. It is the wavelength observed by a comoving hydrogen atom at some intermediate time ##t_{obs}##.
Thanks! I somehow over looked that it said hydrogen atom. For part (d) do you think it's still assuming the same universe as in part (b)?
 
Joella Kait said:
Thanks! I somehow over looked that it said hydrogen atom. For part (d) do you think it's still assuming the same universe as in part (b)?
Yes.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top