What Material is Best for a Frying Pan Handle Based on Heat Capacity?

AI Thread Summary
The discussion focuses on identifying the best material for frying pan handles based on heat capacity, with gold emerging as a potential candidate due to its high specific heat capacity. Participants also engage in calculations related to changes in temperature for an ideal gas, concluding that the temperature change is approximately 30.9 K. The conversation includes analysis of a reversible process represented in a p-V graph, with participants debating the accuracy of various statements about internal energy and work done. Additionally, there is a discussion on the validity of certain thermodynamic principles, particularly regarding heat capacity and enthalpy in open systems. Overall, the thread emphasizes the importance of material properties and thermodynamic principles in practical applications.
Zipzap
Messages
32
Reaction score
0

Homework Statement



1. Ideally, the handle of a frying pan should not get hot while you are cooking with it. Based on the information listed in Table 2.8 of your textbook (or 2.7 in 8th, 2.6 in 7th ed.) choose the substance below that would be the best frying pan handle material. Assume that the same number of moles of substance would be used for each material. (We will ignore other physical properties that one would normally consider in the manufacture of a good frying pan handle, such as strength, weight, cost etc...).
a. Aluminum
b. Graphite.
c. Iron
d. Silver
e. Gold

2. Suppose 1.80 moles of an ideal gas [C(V,m) = 11.31 J K-1 mol-1] undergoes a process that changes its state. Calculate the change in temperature if during this process 628.6 J of heat flows into the gas, while the gas performs 628.6 J of work. Write your answer in Kelvin accurate to the first decimal place.

3. A system in state A undergoes a series of reversible processes shown in the p-V graph below that brings it to state E. The system is then returned to its original state through a single reversible process. We are told that 30 J of work was done on the system to bring it back to state A from state E and in this process the system lost 60 J of heat. Based on this information and the appearance of the p-V graph below, which of the following statements would be TRUE? More than one answer can be chosen but marks are deducted from incorrectly chosen answers. Make sure you check that the direction of the process matches the sign of the given energy values.


a. The internal energy change going from state A to state E (ΔUAE) is -30 J. (Take care that you do the calculation for the correct direction - from A to E!)
b. For the process following path ABCDE the system is doing work.
c. If wABCDE = -20 J then the absolute value of (wBC + wCD + wDE) must be less than 20 J.
d. ΔHABCD=CpΔT, where ΔT is the TD-TA.


4. Which of the following are true? Choose all that apply. (p.s. I lose marks for choosing a wrong answer)
a. It is not possible to use ΔU=CVΔT to calculate the change in internal energy of a fixed quantity of gas that undergoes an irreversible compression.
b. The heat generated by a chemical reaction run in a container that is open to the air is equal to the enthalpy of that reaction.
c. For a constant pressure process, ΔH=ΔU+pΔV.
d. Heat capacity is a path function.

The Attempt at a Solution



MY WORK:

Here's what I have thus far:
1) I searched up the specific heat capacity for each element, since I figured that the element with the highest heat capacity will be the one that gets the least hot. Thus, I think Gold would be the answer.
Aluminum = 24.35
Graphite = 8.53
Iron = 25.10
Silver = 25.351
Gold = 25.42

2) This is where I'm stuck, so maybe somebody could help me out! =)
I know that (delta)U = q(subscript V) = n * C(subscript V,M) * (Delta)T
I know q, but I'm also given "w" (work). Assuming that I don't use "W"
628.6 = 1.8 * 11.31 * (delta)T
(delta)T = 30.9 K

I'm really stuck on this problem! =(

3) IMAGE: http://i.imgur.com/fP9po.gif
(A) can't be true. (delta)U = q + w. If from E->A we do 30 J of work ON the system, while it loses 60 J of heat FROM the system, we have -60 + 30 = -30.
HOWEVER, from A->E, the system needs to DO 30 J of work, while RECEIVING 60 J of work, meaning that (delta)U = 60 - 30 = 30 J.

(B) should be true. We can calculate the work done from A to E by finding the area under the lines that connect B-C, and D-E.

(C) seems false. From A-B, the volume stays constant, meaning (delta)V= 0, and thus V = 0. As mentioned in (B), it's from B-C and D-E that work is done.

(D) - I have this gut feeling that it's true since "H" (enthalpy) is a state function. Help?


4)
(A) is tricky for me. I'm guessing false because U is a state function, but I don't know why.

(B) I'm guessing true. My logic: a container open in air is subject to constant pressure, and thus heat transfer can be used to measure enthalpy.

(C) False. H = H2 - H1. H2 = U2 -p2V2, H1 = U1 - p1V1

(D) True. We need to know conditions under which heat capacity for a material was measured, and thus we must know the path.
 
Physics news on Phys.org
Zipzap said:
during this process 628.6 J of heat flows into the gas, while the gas performs 628.6 J of work

If you put in 628.6 J and you draw 628.6 J out, how much is left to change the temperature?
 
Would it be 0.0 since (delta)U = 628.6 - 628.6 = 0?
Because I know that q + w =/= nC(v,m)*(delta)T.

Do you have any comments for my other questions? They would really help! =)
 
1st sounds OK, especially if you are asked to use table containing heat capacities.
 
So then I have #1-2 right? What about the last two questions?
 
SOMEBODY PLEASE HELP ME!

I have to hand this in tomorrow and I won't have any time tomorrow morning to do any work on it! Any help whatsoever for #2-4 will MAKE A HUGE DIFFERENCE! =D =D =D
 
Thread 'Confusion regarding a chemical kinetics problem'
TL;DR Summary: cannot find out error in solution proposed. [![question with rate laws][1]][1] Now the rate law for the reaction (i.e reaction rate) can be written as: $$ R= k[N_2O_5] $$ my main question is, WHAT is this reaction equal to? what I mean here is, whether $$k[N_2O_5]= -d[N_2O_5]/dt$$ or is it $$k[N_2O_5]= -1/2 \frac{d}{dt} [N_2O_5] $$ ? The latter seems to be more apt, as the reaction rate must be -1/2 (disappearance rate of N2O5), which adheres to the stoichiometry of the...
I don't get how to argue it. i can prove: evolution is the ability to adapt, whether it's progression or regression from some point of view, so if evolution is not constant then animal generations couldn`t stay alive for a big amount of time because when climate is changing this generations die. but they dont. so evolution is constant. but its not an argument, right? how to fing arguments when i only prove it.. analytically, i guess it called that (this is indirectly related to biology, im...
Back
Top