What Should I Substitute u For in \(\int \frac{e^{3x}}{e^{2x}+3e^{x}+2} \, dx\)?

  • Thread starter Thread starter suspenc3
  • Start date Start date
suspenc3
Messages
400
Reaction score
0
\int \frac{e^3^x}{e^2^x+3e^x+2}dx

what should i substitute "u" for?
 
Physics news on Phys.org
u= ex would be a good start!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top