What % volume of this floating object is submerged?

AI Thread Summary
The discussion revolves around determining the percentage of a floating object submerged in water, given its density of 985 kg/m^3 compared to water's density of 1000 kg/m^3. The initial calculation suggests that 1.5% of the object floats above water, but there is a need for a deeper analysis of the physics involved. The concept of buoyancy is emphasized, explaining that the object displaces water until the weight of the displaced water equals the weight of the object. A proper explanation using equations and ratio reasoning is encouraged to clarify the relationship between the volume submerged and the density ratio. The conversation also touches on a related question about floating objects between two liquids, highlighting the need for a new thread for such inquiries.
5P@N
Messages
58
Reaction score
3

Homework Statement


An object of 985 kg/cm^3 density is placed in water, which has a density of 1000 kg/m^3.
What percentage of the object will be floating above the water?

Homework Equations

The Attempt at a Solution


985/1000 = .985, or 98.5%. 100 - 98.5 = 1.5%. Therefore: 1.5% of this object will float

Correct? Thoughts?
 
Physics news on Phys.org
Well, it's the right answer, but I don't see any analysis to convince me you did anything more than pull some numbers out of the air. I'd like to see some discussion of the physics, as applied to this problem. The objective is to learn how to apply the physics, and not just to guess the right answer to a specific problem.
 
5P@N said:

Homework Statement


An object of 985 kg/cm^3 density is placed in water, which has a density of 1000 kg/m^3.

Did you mean to express the densities in two different units?
 
Mister T said:
Did you mean to express the densities in two different units?
Yeah, an object with a density of 985 kg/cc will sink like the proverbial stone. :rolleyes:
 
OOPS!

I meant: cubic meters, not cubic cm for the object's density

At the time I originally posted, I had difficulty expressing my rationale behind my answer, but upon thinking about it later, I came up with the following, subject to approval...

Obviously, an object which is less dense than another will float. But how much will submerge? When placed in the water, the floating object will continue to displace water, until the total weight of the water displaced is equal to the total weight of the object. Once this point is reached, the force of gravity is counterbalanced by the water's bouyancy, and it floats. This begs the question: "how much water will be displaced in terms of volume?" Well, since the water is more dense than the object, a smaller volume will be displaced. The displaced volume has an equal weight of the object. Thus: by dividing the less dense object by the denser fluid displaced, the percentage volume of the object that is submerged, which is equal to the volume of displaced water, is determined. Subtracting 100 from this give the percentage that floats.
 
5P@N said:
Obviously, an object which is less dense than another will float. But how much will submerge? When placed in the water, the floating object will continue to displace water, until the total weight of the water displaced is equal to the total weight of the object. Once this point is reached, the force of gravity is counterbalanced by the water's bouyancy, and it floats. This begs the question: "how much water will be displaced in terms of volume?" Well, since the water is more dense than the object, a smaller volume will be displaced. The displaced volume has an equal weight of the object. Thus: by dividing the less dense object by the denser fluid displaced, the percentage volume of the object that is submerged, which is equal to the volume of displaced water, is determined. Subtracting 100 from this give the percentage that floats.

I'm not sure if your instructor will find that response acceptable. You don't explain quantitatively why the volume ratio should be exactly the same as the density ratio. There are ways to explain it using ratio reasoning, but the usual approach is to use equations. Start with the balance of forces, which you explained perfectly well, by the way, and then make substitutions for the quantities on both sides. Factors will cancel and you'll be left with an equation with a volume ratio on one side and a density ratio on the other.
 
Would you be willing to give an example?
 
Sure. An object has a density of 750 kg/m3 so 75% of it's volume is submerged when it floats on water.
 
5P@N said:
Would you be willing to give an example?
Let V be the volume of the object, and let f be the fraction of its volume below the surface. In terms of V and f, what is the volume below the surface? What is the displaced volume of water? What is the weight of the displaced volume of water? What is the buoyant force? What is the weight of the object? What is the equilibrium force balance on the object?

Chet
 
  • #10
what if a solid was floating between two liquids, oil and water for example, how do you calculate the percentage of the solid that is underwater and under oil.help.
 
  • #11
The thread in which you are posting is from 2015. This being the homework forum, you are required to post your question in a new thread, use the template that is provided and show your attempt before assistance can be offered.
 
Last edited:
  • Like
Likes Chestermiller
Back
Top