What's Causing the Display Issue with My LaTex Code?

  • LaTeX
  • Thread starter bomba923
  • Start date
  • Tags
    Latex
In summary: This formula can also be used for two sets of data to find the correlation between them. In summary, the conversation discusses how to find the correlation coefficient between two sets of data using the standard deviation formula and the z-score formula. It also explains how to simplify the calculations by factoring and canceling out terms.
  • #1
bomba923
763
0
What's wrong with my code? Why would LaTex show my work?

[tex] \begin{array}{l}
r = \frac{1}{{k - 1}}\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \bar x}}{{S_x }}} \right)\left( {\frac{{y_n - \bar y}}{{S_y }}} \right)} \right]} = \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}}}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}}}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}
{\rm multiply both fractions} \\
{\rm by }\frac{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 k}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$k$}}} \right)}}{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 k}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$k$}}} \right)}} = \frac{{k^{ - 1} }}{{k^{ - 1} }} = \frac{k}{k} = 1 \\
\end{array} \right) \Rightarrow \\
\left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}
{\rm rewrite the bottoms sums over} \\
{\rm a common denominator,}\;\left( k \right) \\
\end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{k}} \right)^2 } }}{{k - 1}}} }}} \right)} \right]} \\
\Rightarrow \left( \begin{array}{l}
{\rm Expand the bottom sums to factor } \\
{\rm out }\left( k \right).{\rm Because we have a sum of } \\
squares{\rm , we will factor out a }\left( {k^2 } \right) \\
\end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{k^2 \left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{k^2 \left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}
{\rm From this, we can solve the square root of} \\
\;\left( {k^2 } \right)\;{\rm to place this value outside the radical } \\
\end{array} \right) \Rightarrow \\
\Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{array}{l}
{\rm The }\left( k \right){\rm values will cancel } \\
{\rm as we multiply:}\;k \cdot \sqrt {\frac{1}{{k^2 }}} = 1 \\
\end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \\
\Rightarrow \left( \begin{array}{l}
{\rm We express the bottom radical as a} \\
{\rm a radical numerator divided by }\sqrt {k - 1} ; \\
{\rm therefore, we can place }\sqrt {k - 1} {\rm in the } \\
{\rm numerator of the entire equation } \\
\end{array} \right) \Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left\{ {\left[ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\sqrt {k - 1} }}{{\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } }}} \right]\left[ {\frac{{\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)\sqrt {k - 1} }}{{\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } }}} \right]} \right\}} \Rightarrow \left( \begin{array}{l}
{\rm We can multiply both z - score expressions} \\
{\rm to simplify the sum and remove }\sqrt {k - 1} \\
\end{array} \right) \Rightarrow \\
\Rightarrow \left( {\frac{1}{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\frac{{\left( {k - 1} \right)\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}{{\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } } \right)\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } } \right)}}} \right]} = \sum\limits_{n = 1}^k {\left\{ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }}} \right\}} = = \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)} \right]} }}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }} \Rightarrow \\
\Rightarrow \left( {{\rm Substitute}\left\{ \begin{array}{l}
a = \sum\limits_{n = 1}^k {x_n } \\
b = \sum\limits_{n = 1}^k {y_n } \\
\end{array} \right\}} \right) \Rightarrow \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right) + ab} \right]} }}{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k + a^2 } \right)} } \right]\left[ {\sum\limits_{n = 1}^k {y_n^2 k^2 - 2by_n k + b^2 } } \right]} }} = \Rightarrow \left( \begin{array}{l}
{\rm We can take out}\left( {ab} \right){\rm from the } \\
{\rm numerator and the}\left( {a^2 ,b^2 } \right){\rm from the } \\
{\rm denominator as}\left( {kab} \right){\rm and}\left( {a^2 k,b^2 k} \right) \\
\end{array} \right) \Rightarrow \frac{{kab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right)} \right]} }}{{\sqrt {\left[ {a^2 k + \sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k} \right)} } \right]\left[ {b^2 k + \sum\limits_{n = 1}^k {\left( {y_n^2 k^2 - 2by_n k} \right)} } \right]} }} \Rightarrow \\
\Rightarrow \left( \begin{array}{l}
{\rm Then, we can factor out the} \\
\left( k \right){\rm from the sum expressions} \\
\end{array} \right) \Rightarrow = \frac{{kab + k\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} }}{{\sqrt {\left[ {a^2 k + k\sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 k + k\sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = = \frac{{k\left\{ {ab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} } \right\}}}{{\sqrt {k^2 \left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} \Rightarrow \left( \begin{array}{l}
{\rm The}\left( {k^2 } \right){\rm in the denominator} \\
{\rm radical can be taken out and} \\
{\rm will cancel with the }\left( k \right) \\
{\rm in the equation numerator} \\
\end{array} \right) \\
= \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}{{\sqrt {\left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}{{\sqrt {\left\{ {a^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2a} \right)} \right]} } \right\}\left\{ {b^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2b} \right)} \right]} } \right\}} }} \Rightarrow \left( \begin{array}{l}
{\rm Replace variables }\left( {a,b} \right) \\
{\rm with their original assignments} \\
\end{array} \right) \Rightarrow \\
\frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}{{\sqrt {\left[ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n \sum\limits_{n = 1}^k {x_n } } \right)} } \right]\left[ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n \sum\limits_{n = 1}^k {y_n } } \right)} } \right]} }} = \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}{{\sqrt {\left\{ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2\sum\limits_{n = 1}^k {x_n } } \right)} \right]} } \right\}\left\{ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2\sum\limits_{n = 1}^k {y_n } } \right)} \right]} } \right\}} }} \\
\end{array} [/tex]

What does it mean;--what's "invalid" here?
 
Physics news on Phys.org
  • #2
Hmm---I think I fixed it; how do you know when to press enter and start a new command line, so you can see my WHOLE work? (because browser's don't scroll that far!)
[tex] \begin{gathered}
r = \frac{1}
{{k - 1}}\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \bar x}}
{{S_x }}} \right)\left( {\frac{{y_n - \bar y}}
{{S_y }}} \right)} \right]} = \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}
{k}}}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)\left( {\frac{{y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}
{k}}}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}
\text{multiply both fractions} \hfill \\
\text{by }\frac{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 k}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$k$}}} \right)}}
{{\left( {{\raise0.7ex\hbox{$1$} \!\mathord{\left/
{\vphantom {1 k}}\right.\kern-\nulldelimiterspace}
\!\lower0.7ex\hbox{$k$}}} \right)}} = \frac{{k^{ - 1} }}
{{k^{ - 1} }} = \frac{k}
{k} = 1 \hfill \\
\end{gathered} \right) \Rightarrow \hfill \\
\left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n - \frac{{\sum\limits_{n = 1}^k {x_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n - \frac{{\sum\limits_{n = 1}^k {y_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}
\text{rewrite the bottoms sums over} \hfill \\
\text{a common denominator,}\;\left( k \right) \hfill \\
\end{gathered} \right) \Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{k}} \right)^2 } }}
{{k - 1}}} }}} \right)} \right]} \hfill \\
\Rightarrow \left( \begin{gathered}
\text{Expand the bottom sums to factor } \hfill \\
\text{out }\left( k \right).\text{ Because we have a sum of } \hfill \\
squares\text{, we will factor out a }\left( {k^2 } \right) \hfill \\
\end{gathered} \right) \Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}
{{k^2 \left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{{k\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}
{{k^2 \left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}
\text{From this, we can solve the square root of} \hfill \\
\;\left( {k^2 } \right)\;\text{to place this value outside the radical } \hfill \\
\end{gathered} \right) \Rightarrow \hfill \\
\Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}
{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}
{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \left( \begin{gathered}
\text{The }\left( k \right)\text{values will cancel } \hfill \\
\text{as we multiply:}\;k \cdot \sqrt {\frac{1}
{{k^2 }}} = 1 \hfill \\
\end{gathered} \right) \Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\left( {\frac{{x_n k - \sum\limits_{n = 1}^k {x_n } }}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } }}
{{\left( {k - 1} \right)}}} }}} \right)\left( {\frac{{y_n k - \sum\limits_{n = 1}^k {y_n } }}
{{\sqrt {\frac{{\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } }}
{{\left( {k - 1} \right)}}} }}} \right)} \right]} \Rightarrow \hfill \\
\Rightarrow \left( \begin{gathered}
\text{We express the bottom radical as a} \hfill \\
\text{a radical numerator divided by }\sqrt {k - 1} ; \hfill \\
\text{therefore, we can place }\sqrt {k - 1} \text{ in the } \hfill \\
\text{ numerator of the entire equation } \hfill \\
\end{gathered} \right) \Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left\{ {\left[ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\sqrt {k - 1} }}
{{\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } }}} \right]\left[ {\frac{{\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)\sqrt {k - 1} }}
{{\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } }}} \right]} \right\}} \Rightarrow \left( \begin{gathered}
\text{We can multiply both z - score expressions} \hfill \\
\text{to simplify the sum and remove }\sqrt {k - 1} \hfill \\
\end{gathered} \right) \Rightarrow \hfill \\
\Rightarrow \left( {\frac{1}
{{k - 1}}} \right)\sum\limits_{n = 1}^k {\left[ {\frac{{\left( {k - 1} \right)\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}
{{\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } } \right)\left( {\sqrt {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } } \right)}}} \right]} = \sum\limits_{n = 1}^k {\left\{ {\frac{{\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)}}
{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }}} \right\}} = = \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)} \right]} }}
{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n k - \sum\limits_{n = 1}^k {x_n } } \right)^2 } } \right]\left[ {\sum\limits_{n = 1}^k {\left( {y_n k - \sum\limits_{n = 1}^k {y_n } } \right)^2 } } \right]} }} \Rightarrow \hfill \\
\Rightarrow \left( {\text{Substitute}\left\{ \begin{gathered}
a = \sum\limits_{n = 1}^k {x_n } \hfill \\
b = \sum\limits_{n = 1}^k {y_n } \hfill \\
\end{gathered} \right\}} \right) \Rightarrow \frac{{\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right) + ab} \right]} }}
{{\sqrt {\left[ {\sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k + a^2 } \right)} } \right]\left[ {\sum\limits_{n = 1}^k {y_n^2 k^2 - 2by_n k + b^2 } } \right]} }} = \Rightarrow \left( \begin{gathered}
\text{We can take out}\left( {ab} \right)\text{from the } \hfill \\
\text{numerator and the}\left( {a^2 ,b^2 } \right)\text{from the } \hfill \\
\text{denominator as}\left( {kab} \right)\text{and}\left( {a^2 k,b^2 k} \right) \hfill \\
\end{gathered} \right) \Rightarrow \frac{{kab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k^2 - k\left( {y_n a + x_n b} \right)} \right]} }}
{{\sqrt {\left[ {a^2 k + \sum\limits_{n = 1}^k {\left( {x_n^2 k^2 - 2ax_n k} \right)} } \right]\left[ {b^2 k + \sum\limits_{n = 1}^k {\left( {y_n^2 k^2 - 2by_n k} \right)} } \right]} }} \Rightarrow \hfill \\
\Rightarrow \left( \begin{gathered}
\text{Then, we can factor out the} \hfill \\
\left( k \right)\text{from the sum expressions} \hfill \\
\end{gathered} \right) \Rightarrow = \frac{{kab + k\sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} }}
{{\sqrt {\left[ {a^2 k + k\sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 k + k\sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = = \frac{{k\left\{ {ab + \sum\limits_{n = 1}^k {\left[ {\left( {x_n y_n } \right)k - \left( {y_n a + x_n b} \right)} \right]} } \right\}}}
{{\sqrt {k^2 \left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} \Rightarrow \left( \begin{gathered}
\text{The}\left( {k^2 } \right)\text{in the denominator} \hfill \\
\text{radical can be taken out and} \hfill \\
\text{will cancel with the }\left( k \right) \hfill \\
\text{in the equation numerator} \hfill \\
\end{gathered} \right) \hfill \\
= \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}
{{\sqrt {\left[ {a^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n a} \right)} } \right]\left[ {b^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n b} \right)} } \right]} }} = \frac{{ab + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n b - y_n a} \right)} }}
{{\sqrt {\left\{ {a^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2a} \right)} \right]} } \right\}\left\{ {b^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2b} \right)} \right]} } \right\}} }} \Rightarrow \left( \begin{gathered}
\text{Replace variables }\left( {a,b} \right) \hfill \\
\text{with their original assignments} \hfill \\
\end{gathered} \right) \Rightarrow \hfill \\
\frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}
{{\sqrt {\left[ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {x_n^2 k - 2x_n \sum\limits_{n = 1}^k {x_n } } \right)} } \right]\left[ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left( {y_n^2 k - 2y_n \sum\limits_{n = 1}^k {y_n } } \right)} } \right]} }} = \frac{{\left( {\sum\limits_{n = 1}^k {x_n } } \right)\left( {\sum\limits_{n = 1}^k {y_n } } \right) + \sum\limits_{n = 1}^k {\left( {x_n y_n k - x_n \sum\limits_{n = 1}^k {y_n } - y_n \sum\limits_{n = 1}^k {x_n } } \right)} }}
{{\sqrt {\left\{ {\left( {\sum\limits_{n = 1}^k {x_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {x_n \left( {x_n - 2\sum\limits_{n = 1}^k {x_n } } \right)} \right]} } \right\}\left\{ {\left( {\sum\limits_{n = 1}^k {y_n } } \right)^2 + \sum\limits_{n = 1}^k {\left[ {y_n \left( {y_n - 2\sum\limits_{n = 1}^k {y_n } } \right)} \right]} } \right\}} }} \hfill \\
\end{gathered} [/tex]
 
  • #3
1.It's in the wrong forum;
2.Don't abuse the latex code and mess up page layout.I don't want to change the # of pixels only to see your nonsense...
3.Use \\ or simply break the code (use [ tex ] & [ /tex ] tags more frequently.

Oh.4.Did i say that your post is a monstruosity which should be deleted?

Daniel.
 
  • #4
Be nice!

But that is the largest I've seen.

bomba, I suggest you experiment on posts and use the "preview post" feature. Perhaps if you look at some posts by others that use LaTex and hit the "quote" button, as if you were going to reply, you will see how they did the formatting.
 
  • #5
Sorry,Evo.I'm not (a) Saint : I overreact,sometimes...:redface:

Daniel.

P.S.The monstrusity part is not real,it's SURREAL :-p
 

1. Why won't LaTex display my equations correctly?

There could be a few reasons for this. One possibility is that there is a typo in your code, such as a missing curly brace or a misspelled command. Another possibility is that you are using a package that is not installed on your system. Lastly, make sure you are using the correct syntax for the LaTex commands, as they can vary slightly between different packages or versions.

2. I copied and pasted LaTex code from a website, but it's not displaying properly. What's wrong?

It's possible that the website you copied from used a different package or version of LaTex, which can lead to compatibility issues. It's always a good idea to double check the syntax and make sure you have all the necessary packages installed on your system.

3. I'm using LaTex in a document, but the equations are not showing up at all. What's happening?

One possible reason for this could be that you have not included the necessary LaTex packages in your document's preamble. Make sure you have the correct packages included and that they are properly loaded.

4. I'm using LaTex in a presentation, but the equations are too small to read. How can I fix this?

This issue can often be solved by using the appropriate font size in your LaTex code. Make sure to specify a larger font size for equations that will be displayed in a presentation, and adjust as needed to ensure readability.

5. When I try to display my LaTex equations, they are not centered on the page. How can I center them?

You can center your equations by using the \centering command before the equation or by using the align environment. Make sure to also remove any extra line breaks or spacing in your code, as this can affect the alignment of your equations.

Similar threads

  • MATLAB, Maple, Mathematica, LaTeX
Replies
1
Views
1K
  • Calculus and Beyond Homework Help
Replies
1
Views
230
  • Calculus and Beyond Homework Help
Replies
6
Views
484
Replies
11
Views
1K
  • MATLAB, Maple, Mathematica, LaTeX
Replies
3
Views
1K
  • Introductory Physics Homework Help
Replies
2
Views
243
  • Advanced Physics Homework Help
Replies
9
Views
1K
Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Back
Top