B What's so great about Noether's theorem?

AI Thread Summary
Noether's theorem establishes a profound link between symmetries and conserved quantities in physics, asserting that for every symmetry, there exists a corresponding conservation law. This theorem provides a deeper understanding of why certain quantities, like energy, are conserved, linking them to fundamental symmetries such as time-translation. The discussion highlights that while the theorem may seem straightforward, its implications are complex, particularly in cases like Kepler's laws, where certain symmetries do not yield conserved quantities. By analyzing symmetries, one can deduce important features of physical systems without solving their equations of motion directly. Overall, Noether's theorem is crucial for understanding the foundational principles of physics.
Thomas Rigby
Messages
22
Reaction score
3
I read about Noether's theorem that says how for every symmetry there is a conserved quantity. Seems kind of obvious. Does anyone understand it well enough that they can explain precisely why that notion is profound?
 
  • Skeptical
  • Sad
Likes weirdoguy and PeroK
Physics news on Phys.org
Thomas Rigby said:
I read about Noether's theorem that says how for every symmetry there is a conserved quantity. Seems kind of obvious. Does anyone understand it well enough that they can explain precisely why that notion is profound?
Well, what's "profound" is something of a matter of taste, but...

Noether's theorem contributes a deeper level of understanding. For example we have believed that energy is conserved for centuries, but had no better justification for this belief than that we had never ever observed a violation. Noether's theorem tells us that energy conservation is a consequence of time-translation symmetry, that the universe has to work that way if it has that symmetry.
 
  • Like
Likes vanhees71, PhDeezNutz, russ_watters and 3 others
Thomas Rigby said:
I read about Noether's theorem that says how for every symmetry there is a conserved quantity. Seems kind of obvious.
And yet, if you phrase Noether's Thm in that too-simplistic way, the statement is false.

Standard phrasing of Noether's Thm involves "leaving the action unchanged". But Kepler's 3rd law arises from a rescaling of space and time (i.e., a nonuniform dilation). This multiplies the Lagrangian by a constant, hence changes the action, but does not affect the equations of motion. Thus it is a symmetry which maps solutions of the equations of motion among themselves. This symmetry does not commute with the Hamiltonian, hence does not correspond to a conserved quantity.

(This is not to denigrate Noether's Thm of course -- it is important in a vast array of physical scenarios.)

Thomas Rigby said:
Does anyone understand it well enough that they can explain precisely why that notion is profound?
One can deduce various features of a (class of) systems by examining its symmetries, more easily than exhaustively solving its equations of motion. E.g., solving for Kepler orbits leads to a transcendental equation which cannot be solved analytically. But a study of the various symmetries of that problem (energy conservation, momentum conservation, the LRL vectors, and the K3 dilation symmetry) allow many useful features of the orbits to be deduced. E.g., what's the relation between orbital radius and tangential velocity, and so on.

The quantum version of the same problem, i.e., the hydrogen atom, allows various features of the energy and angular momentum spectra to be discovered by study of the Lie algebra of those symmetries, without needing to solve explicitly for the wave function.
 
  • Like
Likes vanhees71, Nugatory and topsquark
Nugatory said:
Well, what's "profound" is something of a matter of taste, but...
She was described by Pavel Alexandrov, Albert Einstein, Jean Dieudonné, Hermann Weyl and Norbert Wiener as the most important woman in the history of mathematics.
https://en.wikipedia.org/wiki/Emmy_Noether
 
  • Like
Likes vanhees71 and Nugatory
Who says physical laws need to be profound? That's not the same as important. The first law of thermodynamics seems pretty obvious to me, but it is critically important.
 
Thomas Rigby said:
Seems kind of obvious.
Please, prove it.
 
  • Like
Likes vanhees71, gmax137, Nugatory and 2 others
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top