MHB What's the best strategy to solving this Integral in 3 minutes?

  • Thread starter Thread starter Lorena_Santoro
  • Start date Start date
  • Tags Tags
    Integral Strategy
AI Thread Summary
To solve the integral of cos^3(2x), it is effective to separate it into (cos^2(2x))cos(2x) and use the identity cos^2(2x) = 1 - sin^2(2x). A substitution of u = sin(2x) simplifies the integral, leading to du = 2cos(2x)dx, which allows for the transformation of cos(2x)dx into (1/2)du. The integral then evaluates to (1/2)∫(1 - u^2)du from 0 to sin(8), resulting in the expression sin(8) - (sin^3(8)/3). This method demonstrates a clear strategy to solve the integral efficiently within a limited time frame.
Lorena_Santoro
Messages
22
Reaction score
0
 
Mathematics news on Phys.org
Please do not double post here, either.

-Dan
 
Separate cos^3(2x) as (cos^2(2x))cos(2x)= (1- sin^2(2x))cos(2x). Now use the substitution u= sin(2x) so that du= 2cos(2x)dx, cos(2x)dx= (1/2)du. When x= 0, u= sin(0)= 0 and when x= 4, u= sin(8). The integral becomes $$\frac{1}{2}\int_0^{sin(8)}(1- u^2)du=\left[u- \frac{u^3}{3}\right]_0^{sin(8)}$$$$= sin(8)- \frac{sin^3(8)}{3}$$.
 
$x = \dfrac{\pi}{4} \implies \text{ upper limit }, u= 1$
 
Last edited by a moderator:
Yes, and thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top