the same thing happens in two other seemingly different settings.
imagine you have a line in the plane, and you want to describe some other line parallel to it. well, all you need to do is say "how far you shift it over". one way of specifying this, is to pick some other line NOT parallel to the first line, and just say how far along the 2nd line you go.
in other words, instead of thinking of the plane as "two dimensions of space", we can pick a one-dimensional subset, and divide the plane into "cosets" of this line (parallel lines to our original line). this set of parallel lines "acts" just like a line itself.
in technical terms, if V is a vector space, with a subspace W, we can decompose V into a direct sum: V is "isomorphic" to W⊕(V/W). we can pick a point in V, by first specifying a point in W, and then specifying "which copy" of W in V it lies in. we can do this in any dimension: in 3 dimensions, think of a plane, and then the cosets are parallel planes stacked on the original plane like a deck of cards. or if we have a line, the cosets are parellel lines (like a stack of (really, really thin) straws), if we pick a point on an intersecting plane, it is like saying "where" on "which" straw we're at.