When and where will the police car intercept the stolen car?

AI Thread Summary
The discussion revolves around a physics problem involving a stolen car moving at a constant speed of 40 m/s and a police car that accelerates from rest at 8 m/s² after a delay of three seconds. The user is struggling to match their calculations with the book's answers, which state that the interception occurs in 12.4 seconds at a distance of 617 meters from the lay-by. Participants are encouraged to show their work to identify any errors in the calculations. The focus remains on solving the problem accurately to understand the dynamics of the situation.
VICKZZA
Messages
22
Reaction score
0

Homework Statement



A stolen car,travelling at constant speed of 40m/s,passes a police car in a lay-by.The police car sets off three seconds later,accelerating uniformly at 8m/s^2.How long does the car take to intercept the stolen car and how far from the lay-by does this happen?
 
Physics news on Phys.org
i have done the same thing but answer is still not matching with the book.the anwer in my book is 12.4seconds and 617m distance
 
Answer in the book is correct.
 
VICKZZA said:

Homework Statement



A stolen car,travelling at constant speed of 40m/s,passes a police car in a lay-by.The police car sets off three seconds later,accelerating uniformly at 8m/s^2.How long does the car take to intercept the stolen car and how far from the lay-by does this happen?

Please show your work so that we can help you.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Back
Top