When integrated 1/y^2 becomes -1/y why is this?

  • Thread starter Thread starter escobar147
  • Start date Start date
escobar147
Messages
31
Reaction score
0
when integrated 1/y^2 becomes -1/y why is this?
 
Physics news on Phys.org
If you mean integrating with respect to y, try taing the derivative of -1/y.
 
i still don't understand
 
daveb said:
If you mean integrating with respect to y, try taing the derivative of -1/y.

escobar147 said:
i still don't understand
daveb is asking you to find this derivative:
$$\frac{d}{dy}\left(\frac{-1}{y}\right)$$
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top