pitaly
- 6
- 1
The Cauchy-Schwartz inequality (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2) - (\sum_{i=1}^n x_iy_i)^2 \geq 0 holds with equality (or is as "small" as possible) if there exists an a \gt 0 such that x_i=ay_i for all i=1,...,n.
But when is the inequality as "large" as possible? That is, can we say anything under what conditions (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2) - (\sum_{i=1}^n x_iy_i)^2 is as large as possible?
But when is the inequality as "large" as possible? That is, can we say anything under what conditions (\sum_{i=1}^n x_i^2)(\sum_{i=1}^n y_i^2) - (\sum_{i=1}^n x_iy_i)^2 is as large as possible?