When, Where,and How We Find Dervitives

  • Thread starter Thread starter janemba
  • Start date Start date
janemba
Messages
39
Reaction score
0
I WAS JUST WONDERING IF ANYBODY KNOWS HOW TO FIND DERVITIVE OR WHEN TO FIND A DERVITIVE AND WHEN DO WE USE THIS SYMBOL FOR EXAMPLE \Delta WHAT DOES THIS MEAN AND WHEN DO YOU USE IT
 
Physics news on Phys.org
I just responded to your other post. Please read it.
 
Ok

Ok I Did
 
1. Please do not double post.

2. Please do not use all capital letters.

3. Please do not ask such general questions! Most people take 2 or 3 years of calculus to learn the answer.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top