Where are the extrema and inflection points for the function y = x/ln(x)?

  • Thread starter Thread starter Destroxia
  • Start date Start date
  • Tags Tags
    Extrema Point
Destroxia
Messages
204
Reaction score
7

Homework Statement



Find all extrema and inflection points of the function ## y = \frac {x} {ln(x)} ##

Homework Equations



I did the first and second derivative by hand, and they worked out in CAS as well...

## y = \frac {x} {ln(x)} ##
## y' = \frac {lnx - 1} {(ln(x))^2} ##
## y'' = \frac {2 - ln(x)} {x(ln(x))^3} ##

The Attempt at a Solution



EXTREMA:

## y' = \frac {lnx -1} {(ln(x))^2} = 0 ##
## ln(x) - 1 = 0 ##
## ln(x) = 1 ##
## x = e ##

...-....+...
<-------- e -------->

## y = \frac {e} {ln(e)} ##
## y = e ##

Therefore, a minima exists at ##(e,e)##

INFLECTION POINT:

## y'' = \frac {2 - ln(x)} {x(ln(x))^3} = 0 ##
## y'' = 2 - ln(x) = 0 ##
## ln(x) = 2 ##
## x = e^2 ##

...+....-...
<------ e^2 ------>

## y = \frac {e^2} {ln(e^2)} ##
## y = \frac {e^2} {2} ##

Therefore, an inflection point exists at ## (e^2,\frac {e^2} {2}) ##

===============================================

Looking at the graph of ## y = \frac {x} {lnx} ##, the extrema is correct.

Also, I noticed by solving for the denominators = 0, I find that there is a vertical asymptote at x = 1, which seems like it should be the inflection point... not ## (e^2,\frac {e^2} {2}) ##, as the graphing is just continually concave up at ##e^2##, not changing concavity.

I also know the domain is ##(0,1)##U##(1,\infty)## due to the denominator, and property of ##ln(x)##.

======
======

EDIT:

I think I may have gotten it... I forgot to use the critical point for ## y'' = \frac {2 - ln(x)} {x(ln(x))^3}##, when the bottom is equal to zero, which you solve analytically.

##x(ln(x))^3) = 0,## when ## x = 1##

So this tells us there is an inflection point at 1, but what does this mean of the ##e^2## result, I don't see how that is invalid, yet it doesn't satisfy the equation.
 
Last edited:
Physics news on Phys.org
RyanTAsher said:

Homework Statement



Find all extrema and inflection points of the function ## y = \frac {x} {ln(x)} ##

Homework Equations



I did the first and second derivative by hand, and they worked out in CAS as well...

## y = \frac {x} {ln(x)} ##
## y' = \frac {lnx - 1} {(ln(x))^2} ##
## y'' = \frac {2 - ln(x)} {x(ln(x))^3} ##

The Attempt at a Solution



EXTREMA:

## y' = \frac {lnx -1} {(ln(x))^2} = 0 ##
## ln(x) - 1 = 0 ##
## ln(x) = 1 ##
## x = e ##

...-....+...
<-------- e -------->

## y = \frac {e} {ln(e)} ##
## y = e ##

Therefore, a minima exists at ##(e,e)##

INFLECTION POINT:

## y'' = \frac {2 - ln(x)} {x(ln(x))^3} = 0 ##
## y'' = 2 - ln(x) = 0 ##
## ln(x) = 2 ##
## x = e^2 ##

...+....-...
<------ e^2 ------>

## y = \frac {e^2} {ln(e^2)} ##
## y = \frac {e^2} {2} ##

Therefore, an inflection point exists at ## (e^2,\frac {e^2} {2}) ##

===============================================

Looking at the graph of ## y = \frac {x} {lnx} ##, the extrema is correct.

Also, I noticed by solving for the denominators = 0, I find that there is a vertical asymptote at x = 1, which seems like it should be the inflection point... not ## (e^2,\frac {e^2} {2}) ##, as the graphing is just continually concave up at ##e^2##, not changing concavity.

I also know the domain is ##(0,1)##U##(1,\infty)## due to the denominator, and property of ##ln(x)##.

======
======

EDIT:

I think I may have gotten it... I forgot to use the critical point for ## y'' = \frac {2 - ln(x)} {x(ln(x))^3}##, when the bottom is equal to zero, which you solve analytically.

##x(ln(x))^3) = 0,## when ## x = 1##

So this tells us there is an inflection point at 1, but what does this mean of the ##e^2## result, I don't see how that is invalid, yet it doesn't satisfy the equation.

On ##(1,\infty)## ##f(x) = x/\ln(x)## is convex for ##x < e^2## and concave for ##x > e^2##. The function has the rather un-intuitive property that ##f(x) \to +\infty## but ##f'(x) \to 0## as ##x \to \infty##.
 
Ray Vickson said:
On ##(1,\infty)## ##f(x) = x/\ln(x)## is convex for ##x < e^2## and concave for ##x > e^2##. The function has the rather un-intuitive property that ##f(x) \to +\infty## but ##f'(x) \to 0## as ##x \to \infty##.

Okay, so, on this graph I've made, is that point at (e^2, e^2/2) actually an inflection point, but it is just so subtle that it looks like it is still concave up to the human eye at this zoom?

Concavity.jpg
 
Yes, that is exactly what I mean. Thank you for your time!
 
SammyS said:
The terminology "concave up" and "concave down" is very commonly used in introductory Calculus textbooks.

I am aware of that, but there is nothing wrong with exposing the OP to the more modern terminology. Of course, when writing up his solution for marks he would be wise to use the same terminology as his instructor or textbook.
 
Ray Vickson said:
I am aware of that, but there is nothing wrong with exposing the OP to the more modern terminology. Of course, when writing up his solution for marks he would be wise to use the same terminology as his instructor or textbook.
I did not realize that it was more modern terminology.
 
SammyS said:
I did not realize that it was more modern terminology.

Both types are widely used still. However, I believe that the terms "concave up/down" appear mostly in calculus textbooks, having been used first in the 19th century and then copied over and over again ever since. Many more advanced treatments (especially in applications such as optimization, etc.) use the newer terminology, which becomes particularly important when one discusses generalizations such as pseudo-convex, quasi-convex, K-convex and the like (with similar names when 'convex' is replaced by 'concave'). These would be horribly ungainly if they were referred to as pseudo-concave-up, etc.
 
  • #10
Ray Vickson said:
Both types are widely used still. However, I believe that the terms "concave up/down" appear mostly in calculus textbooks, having been used first in the 19th century and then copied over and over again ever since.
Notwithstanding the terms pseudo-convex, quasi-convex, and so on, I believe the terms "concave up" and concave down" are clearer and thereby more easily understood.

If you look at the graph of y = x2, it is obviously concave up. If you omit the direction (up or down), the graph is concave from the perspective of a viewpoint below the graph, but is convex, from the perspective of a viewpoint above the graph. Put another way, the graph of this function divides the plane into two regions: one that is concave (the portion below the graph), and one that is convex (the region above the graph).
 
  • Like
Likes Ray Vickson
  • #11
Mark44 said:
Notwithstanding the terms pseudo-convex, quasi-convex, and so on, I believe the terms "concave up" and concave down" are clearer and thereby more easily understood.

If you look at the graph of y = x2, it is obviously concave up. If you omit the direction (up or down), the graph is concave from the perspective of a viewpoint below the graph, but is convex, from the perspective of a viewpoint above the graph. Put another way, the graph of this function divides the plane into two regions: one that is concave (the portion below the graph), and one that is convex (the region above the graph).

I have never actually heard of a "concave region.

However, even though the function is "concave up" the "upper" region (above the graph) is convex. Oh well.
 
  • #12
Ray Vickson said:
I have never actually heard of a "concave region.
Maybe not that term, exactly, but it's descriptive enough that you should get the idea I'm trying to convey.
Ray Vickson said:
However, even though the function is "concave up" the "upper" region (above the graph) is convex. Oh well.
 
Back
Top