Where do I begin with Laplace for deriving L(f) from L(1)?

  • Thread starter Thread starter asdf1
  • Start date Start date
  • Tags Tags
    Laplace
asdf1
Messages
734
Reaction score
0
for the following question:
let f(t)=t^2. derive L(f) from L(1)

my problem:
i have no clue where to start...
 
Physics news on Phys.org
You need to apply the "frequency division" rule :

{ \cal L} \{ tf(t) \} = (-1) F^{'}(s)

{ \cal L} \{ t^nf(t) \} = (-1)^n F^{(n)}(s)

where

{ \cal L} \{ f(t) \} = F(s)

and in this case

f(t) = 1

marlon

edit : all rules can be found here
 
Last edited:
wow! thank you very much!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top