Which Equation Determines the Time for the Leaning Tower of Pisa to Fall?

  • Thread starter Thread starter roam
  • Start date Start date
AI Thread Summary
The discussion focuses on determining the correct equation that describes the time it takes for the Leaning Tower of Pisa to fall, based on its mass, height, and gravitational acceleration. Participants emphasize using dimensional analysis to evaluate the provided equations, highlighting that only one equation will have consistent dimensions on both sides. The analysis reveals that the equation must equate time dimensions with those derived from mass, height, and gravity. Ultimately, the goal is to identify the physically correct relationship through this method. Dimensional analysis is crucial for confirming the validity of the equations in relation to the physical scenario presented.
roam
Messages
1,265
Reaction score
12

Homework Statement



The ground around the Leaning Tower of Pisa one day gives way and the tower topples over. It is found from Mechanics theory that the only things that may determine the time it takes the toppling tower to fall to the ground are:

the mass (m) of the tower
the height (h) of the tower
the gravity acceleration (g).

Given that k is a dimensionless constant, the dependence of the time t for the tower to strike the ground upon m, h and g is given by:

(a) t=k\sqrt{\frac{g}{h}}

(b) t=k\sqrt{\frac{hm}{g}}

(c) t=k\sqrt{\frac{h}{g}}

(d) t=km\sqrt{\frac{h}{g}}

(e) t=k\sqrt{\frac{m}{g}}


The Attempt at a Solution



I don't recognize any of the formulas here so I can't tell which one is the correct answer. The only formula I can think of that interrelates some of these variables is h=v_y-gt and I can replace the v by at to get h=t(a-g)\Rightarrowt=\frac{a-g}{h}. But again the resulting formula doesn't take mass into account. Can anyone help?
 
Physics news on Phys.org
Try analyse the units (time, length, mass) involved in the different equations (hint: only one of the equations have the same effective unit on both sides).
 
Filip Larsen said:
Try analyse the units (time, length, mass) involved in the different equations (hint: only one of the equations have the same effective unit on both sides).

Alright, I have

T=kmxhygz

T1=mxLy(L/T2)z

T1=mxLy(L/T2)z

T1=mxLy Lz T-2z

So we have x+y-z=1. But I'm stuck here and I have an exam tomorrow...
Could you show me how to work out the values of x,y,z? I don't get it! :(
 
It is simpler than you think - you just have to check in each case if the dimension on the left-hand side of the equation equals the resulting dimension on the right-hand side. (Note, that when I said "unit" in my earlier answer I really meant "dimension", which looks like how you read it anyway).

For instance, in (a) you have dimension T (time) on the left-hand side (all four equations have that dimension on the left-hand side), and on the right-hand side you have g with dimension LS-2 (length divided by time squared) and h with dimension L, so g/h is of dimension LS-2 L-1 = S-2 and finally after the square root you get square root S-2 = S. Since k is dimensionless, the left-hand T is not clearly not equal to S-1 and so you can conclude that this equation cannot be physically correct.

Similar analysis can be done for the remaining three equations to reveal that for one of them the dimensions are equal and this equation then could express a physical correct relationship between the physical quantities involved. Note, that having an equation where the dimensions check is a required, but in general not a sufficient condition for a physical correct relationship. In this problem, however, it is assumed that at least one equation is physical correct and you then use dimensional analysis to show how to identify that one equation.

Good luck with your exam.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top