Answer Work & Kinetic Energy for Mass m Whirling on Table

AI Thread Summary
The discussion focuses on a physics problem involving a mass m whirling on a frictionless table, where the radius of its circular motion changes as the string is pulled. The key point is to demonstrate that the work done in pulling the string corresponds to the increase in the mass's kinetic energy. The solution involves applying Newton's second law in the radial direction and establishing that the quantity r²ω (angular momentum) remains constant. The work done is calculated through integration, leading to the conclusion that the work done equals the change in kinetic energy, confirming the relationship between work and energy in this scenario. The final affirmation of correctness indicates a successful understanding of the problem.
geoffrey159
Messages
535
Reaction score
72

Homework Statement


Mass m whirls on a frictionless table, held to a circular motion by a string which passes through a hole in the table. The string is slowly pulled through the hole so that the radius of the circle changes from ##l_1## to ## l_2## Show that the work done in pulling the string equals the increase in kinetic energy of the mass

Homework Equations


Work and energy

The Attempt at a Solution


[/B]
I guess that the statement "the string is slowly pulled" means that the distance of the mass from the hole cannot change much in a short time, so I assume that ##\dot r = v_r = cst## and ##\ddot r = 0 ##.

By Newton second law in the radial direction:
## \vec T = m\ \vec a_r = m ( \ddot r - r {\dot \theta} ^2)\ \hat r= - mr {\dot \theta} ^2\hat r ##

There no tangential acceleration because there is no force in that direction so :
## 0 = a_\theta = r\ddot \theta + 2 \dot r \dot \theta = \frac{1}{r}\frac{d}{dt}(r^2\dot\theta) ##

So the quantity ## r^2\dot\theta ## is constant, and ##{\dot \theta} ^2 = \frac{c^2}{r^4}## where ##c ## is constant, and rope tension is now ##\vec T = -mc^2\frac{\hat r}{r^3}##

Since rope tension is a central force, its work from ##l_1## to ##l_2## is :
##W_{21} = \int_{l_1}^{l_2} T(r) dr = -mc^2 \int_{l_1}^{l_2} \frac{1}{r^3} dr = \frac{1}{2} m c^2 (\frac{1}{l_2^2} - \frac{1}{l_1^2})##

Because ## c = r^2\dot\theta = r v_\theta ##, and because ## \dot r = v_r ## is constant, then ##
\begin{align}
W_{21} =& \frac{1}{2} m ( v_\theta^2(l_2) - v_\theta^2(l_1)) \\
= & \frac{1}{2} m ( v_r^2(l_2) + v_\theta^2(l_2) - (v_r^2(l_1) +v_\theta^2(l_1))) \\
= & \frac{1}{2} m ( v^2(l_2) - v^2(l_1)) \\
=& \triangle K
\end{align}
##

Is that correct ?
 
Physics news on Phys.org
YES! :)
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top