I White noise & 1/f noise after a system h(t)

iVenky
Messages
212
Reaction score
12
Hi,

I am trying to solve this math equation on finding the variance of a noise after passing through a system whose impulse response is h(t)
X is the input noise of the system and Y is the output noise after system h(t)
if let's say variance of noise Y is
σy2=∫∫Rxx(u,v)h(u)h(v)dudv

where integration limits are from -∞ to +∞. Rxx is the autocorrelation function of noise X. Can you show that if Rxx (τ)=σx2 δ(τ) (models a white noise), then

σy2x2∫h2(u)du (integration limits are from -∞ to +∞)

and if Rxx (τ)=σx2 (models a 1/f noise), then

σy2x2(∫h(u)du)2 (integration limits are from -∞ to +∞)

I don't understand the math behind statistics that well
Thanks
 
Physics news on Phys.org
This sounds like a homework problem. You need to post it in the appropriate Homework forum using the template to show your attempt at a solution.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top