Why aren't these lattices isomorphic?

  • Thread starter Thread starter twoflower
  • Start date Start date
twoflower
Messages
363
Reaction score
0
Hi,

I can't see why these lattices aren't isomorphic:

<br /> (\mathbb{N} \mbox{ u } \left\{-\infty, +\infty\right\}, \le) \mbox{ and } (\mathbb{N} \mbox{ u } \left\{-\infty, +\infty\right\}, \le)^{inverse}<br /> [/itex]<br /> <br /> I thought that this isomorphism would straightforwardly map an element <b>x</b> onto <b>-x</b> in the second lattice, so why aren&#039;t these isomorphic please?<br /> <br /> I see why <b>these</b> two lattices aren&#039;t isomorphic:<br /> <br /> &lt;br /&gt; (\mathbb{N}, \le) \mbox{ and } (\mathbb{N}, \le)^{inverse}&lt;br /&gt; [/itex]&lt;br /&gt; &lt;br /&gt; because the element &lt;b&gt;0&lt;/b&gt; from the first one has no equivalent in the inversed lattice, but the first couple of lattices seems ok to me.&lt;br /&gt; &lt;br /&gt; &lt;br /&gt; &lt;br /&gt; &lt;br /&gt; Thank you for clarification.
 
Last edited:
Physics news on Phys.org
N consists only of positive integers. If you meant Z, all integers, the first pair are isomorphic.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top